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Executive Summary

Digital computing systems needed for Army programs such as the Computer-Aided
Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM)
vehicles may be characterized by high computational throughput and input/output band-
width, hard real-time response, high reliability and availability, and maintainability, testa-

bility, and producibility requirements. In add:Lion, such a system should be affordable to
produce, procure, maintain, and upgrade.

To address these needs the Amly Fault Tolerzmt Architecture (AFTA) is being designed
and constructed under a three-year program comprising the Conceptual Study, Detailed

Design and Fabrication, and Demonstration and Validation phases. This report describes
the results of the Conceptual Study phase of the AF'I'A development. The scope of the
Conceptual Study was quite broad and cover_ topics ranging from mission requirements
to architectural synthesis and analysis to life cycle cost modeling.

AFTA is a militarized version of the Fault Tolerant Parallel Processor (FTPP) devel-

oped by the Charles Stark Dnlper Laboratory, Inc. AFTA is a hard-real-time Byzantine re-
silient parallel processor which is programmed in the Ada language. It supports testability
and redundancy management strategies which permit the dynamic reconfiguration of pro-
cessing sites to enhance sortie availability and mission reliability. It is composed largely of
Non-Developmental Items to reduce the development risk and cost and to facilitate up-
grades. Extensive analytical models and predictive verification and validation techniques
are provided with AFTA to allow application designers to engineer a configuration for spe-
cific missions with a high degree of confidence that the fielded configuration will meet the
mission requirements. As a part of AFTA, a fault tolerant data bus (FTDB) is being devel-
oped to providt_ a highly reliabie, fault tolerant networking system between AFTA and
other digital systems. The conceptual design of the FTDB covers many aspects of network
design, including media technology, media access control, topology, routing, OSI protocol
stacks, and fault detection and recovery. In addition to these traditional network topics, the
FTDB also encompasses techniques from the area of fault-tolerance, including Byzantine

resilience and authentication protocols. .....

AFTA's architectural theory of operation, the AFTA hardware architecture and compo-
nents, and the architecture of the AFTA Operating System have been defined during the

Conceptual Study, as well as a test and maintenance strategy for use in fielded AFTA in-
stallations. A format has been developed for representing mission requirements in a man-
ner suitable for first-order AFTA sizing and analysis. Preliminary requirements have been
obtained for two Army missions: a rotary winged aircraft mission and a ground vehicle
mission. An approach to be used in reducing the probability of AFTA failure due to com-
mon-mode faults has been developcd, as have analytical models for AFTA performance,
reliability, availability, life cycle cost, weight, power, and volume. A plan has been devel-
oped for verifying and wdidating key AFTA concepts during the Dem/Val phase, especially
those which cannot be cost-effectively validaied by accelerated life cycle testing. The ana-
lytical models and partial Army mission requirements developed under the Conceptual
Study have been used to evaluate AFTA configurations for the two selected Army mis-
sions. To assist in documentation and reprocurement of AFTA components, VHDL is

used to describe and design AFTA's developmental hardware. Finally, the requirements,
architecture, and operational theory of the AFTA Fault Tolerant Data Bus have been defined
and described.

The next phase of the development has begtm and will result in a Brassboard AFTA for
demonstration and validation.
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Introduction to Volumes I and II

The long-term objective of the AITI'A program is to develop and deploy the Army Fault

Tolerant Architecture (AFTA) on a variety of Army programs such as the Computer-Aided

Low Altitude Helicopter Flight Program and the Amaored Systems Modernization (ASM)

vehicles. Applications such as these may be characterized by a combination of computa-

tional intensiveness, real-time response requirements, high reliability and availability re-

quirements, and maintainability, testability, and producibility requirements.

The AFTA architecture is based on the Charles Stark Draper Laboratory, Inc. Fault

Tolerant Parallel Processor (FTPF'). AFTA is a real-time computer possessing high relia-

bility, maintainability, availability, testability, and computational capability. It achieves the

first four properties primarily through adherence to a theoretically rigorous theory of fault

tolerance known as Byzantine Resilience, through which arbitrary failure modes can be tol-

erated. It is designed for verifiability and quantifiability of key system attributes with a

high degree of confidence, in part due to its theoretically sound basis and in part due to

plausible parameterizations of fault tolerance and Operating System overheads. Through

the use of parallel processing, Ab-'I'A achieves sufficient throughput for future integrated

avionics and control functions. To be useful for a variety of Army applications, the num-

ber and redundancy level of processing sites in AFTA may be varied from one application

to another, and AFTA is programmed in the DoD-mandated Ada language. AFTA is in-

tended to be relatively easy to produce and upgrade through extensive use of Non Devel-

opmental Items and compliance with well-accepted electrical, mechanical, and functional

standards.

Over the past few years NASA and the Strategic Defense Initiative Office (SDIO) have

sponsored the Advanced Information Processing System (AIPS) program at Draper Labo-

ratory. The overall goal of the AIPS program is to produce the knowledgebase necessary

to achieve validated distributed fault tolerant computer system architectures for advanced

real-time aerospace applications I llar91bl. As a part of this effort, an AIPS engineering

model consisting of hardware building blocks such as Fault Tolerant Processors and Inter-

Computer (IC) and Input/Output (I/O) networks and software building blocks such as Lo-

cal System Services, IC and I/O Communications Services was constructed. AFTA can be

considered to be a high-throughput AIPS building block which can be interfaced to the

AIPS IC network. Section 3.7 describes the AIPS engineering model in more detail and

illustrates how it can be interfaced with AVI'A.
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This reportdescribestheresultsof theConceptualStudyphaseof theAFI'A develop-

ment,andconsistsof fourteensectionsin two volumes.VolumeI is introductoryin nature

andcontainsSections1through3. Section1introducestheAFTA program,its objectives,

andkey elementsof its technicalapproach.Section2 definesa format for representing

missionrequirementsin a mannersuitablefor first-orderAFTA sizingandanalysis,fol-

lowedby adiscussionof the current state of mission requirements acquisition for the tar-

geted Army missions. Section 3 presents an overview of AFTA's architectural theory of

operation.

Volume II contains detailed technical information and analyses in Sections 4 through

14. Section 4 describes the AFTA hardware architecture and components, and Section 5

describes the architecture of the AFTA Operating System. Section 6 describes the architec-

ture and operational theory of the AFTA Fault Tolerant Data Bus. Section 7 presents the

test and maintenance strategy developed for use in fielded AFTA installations. Section 8

describes an approach to be used in reducing the probability of AFTA failure due to com-

mon-mode faults. Section 9 develops analytical models for AFTA performance, reliability,

availability, life cycle cost, weight, power, and volume. Section 10 presents the approach

for using VHDL to describe and design AFTA's developmental hardware. Section 11 de-

scribes a plan for verifying and validating key AFTA concepts during the Dem/Val phase,

and Section 12 utilizes the analytical models and partial mission requirements to generate

AFTA configurations for the TF/TA/NOE and Ground Vehicle missions. References are

contained in Section 13, and a glossary of terms and acronyms is included in Section 14.

Because some readers may wish only to read individual volumes, Volumes I and II

contain some redundant information.
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4. AFTA Hardware Architecture

Section 4 describes the hardware architect_e of the AFTA. The AFTA architecture

consists of a cluster of processing sites interco_ted by a fault-tolerant network system

constructed from custom-built Network Elements_nd fiber optic interconnect. The cluster

also contains controllers for communication between the AFTA, other computer systems,

and I/O devices, k

4.1. AFTA Physical Configuration

A diagram of the physical AFTA configuration is shown in Figure 4-1. The AFTA

consists of 4 or 5 fault-containment regions (FCR). Each FCR contains a Network Element

(NE), 0 to 8 Processing Elements (PE), and 0 or more I/O controllers (IOC).

The Network Elements provide communication between PEs, keep the FCRs synchro-

nized, and maintain data consensus among FCRs. The NE is designed to implement the re-

quirements for Byzantine resilience [LSP82].

The Processing Elements are the computational sites. Each PE consists of a micropro-

cessor, private RAM and ROM, and miscellaneous support devices, such as periodic timer

interrupts. The PEs may optionally have private I/O devices, such as ethernet, RS-232, etc.

The microprocessor may be either a general-purpose processor or a special-purpose pro-

cessor for signal or image processing.

The I/O controllers connect the AFTA to the outside world. These I/O devices can be

anything that is compatible with the bus connecting the elements within the FCR. I/O con-

trollers may have a programmable processor on board which actually drives the I/O. These

devices are referred to as smart I/O. Other I/O controllers may require an off-board proces-

sor to act as the controlling processor over thebus. These devices ate referred to as dumb

I/O. Smart I/O can exist in the virtual AFTA configuration as a simplex virtual group.

Dumb I/O must be controlled by another processor, which could be either a simplex group

or a single member of a fault-masking group. Redundant I/O (such as a dual redundant in-

terface bus) is treated as multiple simplex devices by the AFTA.
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Figure 4-1. AFTA Physical Configuration

The devices in an FCR are interconnected using one or more backplane buses. PEs

communicate with the NEs and IOCs through the bus(es). Data communication is usually

between a PE and the NE, or between a PE and an IOC. Normally, direct PE to PE com-

munication should not be used. If a PE wants to communicate with another PE, the ex-

change primitives provided by the NE should be used.

4.2. AFTA Virtual Configuration

A parallel processor is usually characterized by a network that provides interconnection

between multiple processing sites. Data is passed between processing sites using a mes-

sage-passing paradigm. In the AFTA, the ensemble of Network Elements provides a virtual

bus topology connecting the processing sites.
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TheAFTA has the capability of grouping processors on the virtual bus into virtual

groups. Members of a virtual group execute the same code on the same data set. These

members can compare results, using the Network Elements, to mask a failure in any one of

the FCRs.

The virtual bus topology of the AFTA is shown in Figure 4-2. This figure shows sev-

eral example virtual groups. Virtual groups consisting of only one processing site are called

simplexes. These groups are not fault-masking, since there is only a single member and it

is not possible to determine the validity of a single piece of data without prior knowledge of

the proper value. The other types of virtual groups are triplexes and quadruplexes, consist-

ing of three and four processing sites, respectively. These groups are called fault-masking

groups (FMG), since a fault in any single member will be detected and masked by the other

members.

Input and output controllers are also considered in the virtual configuration. I/O devices

are assigned, either statically or dynamically, to a specific virtual group. The virtual group

to which an I/O device is assigned is responsible for executing the device driver code to

communicate with the device. There are three basic types of I/O configurations in the

AFTA: simplex I/O assigned to a non-FMG, simplex I/O assigned to an FMG, and redun-

dant I/O assigned to an FMG. Each of these configurations is shown in Figure 4-2. See

Section 5.7 for a more complete discussion of I/O drivers in the AFTA system.

I INetwork Element Virtual Bus

Ouedruplex Simplex Triplex Ouradruplex Triplex Triplex Simplex Simplex Simplex
with I/0 with I/0 with I/0

Figure 4-2. AFTA Virtual Configuration

4.3. AFTA Functional Overview

During normal operation, members of a virtual group communicate .between themselves

and with other virtual groups by passing messages through the virtual bus. The virtual bus

can be modeled using an abstraction • known as a Byzantine Resilient Virtual Circuit
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_RVC) [I-Iar87].Thisabstractionhasseveralcharacteristicsthatmakeit suitablefor usein

afault-tolerantsystemasdescribedbelow.

• packetdeliveryisreliable,soavirtual groupwhichsourcesapacketcanexpect
deliveryof thepacket,assumingthatthespecifiedreceivingvirtual groupexists.

• packetsaredeliveredin thesamerelativeorder,i.e. if avirtual groupsourcestwo
packets,packetA followedbypacketB, destinedfor thesamevirtual group,the
receivingvirtual groupreceivepacketA beforeit receivespacketB.

• each member of a virtual group will receive packets in the same order as all other
members of the virtual group.

• each functioning member of a virtual group will receive bitwise identical copies of
every packet delivered to the group.

• packet delivery is synchronous among members of a virtual group.

The characteristics described above are used to implement various functions. These

functions are designed to satisfy the requirements of Byzantine resilience.

Reliable message delivery is a requirement for a fault-tolerant system, such as the

Ab-q'A. Building reliable message delivery on top of an unreliable packet delivery system is

tedious and can never guarantee complete coverage for all random faults [BG87]. By pro-

viding reliable Facket delivery, there is no need for additional software protocols to ensure

reliable message delivery.

Another requirement of fault-tolerant systems is to guarantee consensus among func-

tioning members of a fault-masking group. This requirement is met by voting packets in the

Network Element. The NE will perform a source congruency on single-source data. Rela-

tive packet ordering is also necessary to guarantee consensus.

Fault-tolerant computers must also be synchronized. Synchronous packet delivery is

used as a method of synchronizing processors in a virtual group. A group can synchronize

itself by sending a packet to itself, then waiting for that packet to be delivered. A timeout is

used so that if a member of a group does not respond within an allowed period the same

way as the majority of the group members, that member will be ignored and the remaining

members will continue uninhibited. This type of synchronization is known as functional

synchronization.

The Network Element implements several support operations in addition to the packet

delivery functions.
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Oneof themost importantsupportfunctions is systemreconfiguration.The AFTA

supportsdynamicreconfiguration,allowing thegroupingof physicalprocessingsitesinto

virtual groupsto bechangedin real-time.Themechanismfor reconfiguringthesystemis

theCT update.The configurationtable,or CT, is a tablestoredinternallyon theNetwork

Element.Theprocessorshavenodirectaccessto theCT,but theycaneffect changesin the

CT using the CT update. Processors may keep copies of the CT in local processor mem-

ory. In previous FTPP designs, a single distinguished virtual group referred to as the re-

configuration authority was given sole authority for performing the CT update process.

While a re.configuration authority-based protocol may be used for certain AFTA reconfigu-

ration modes, there is no hardware support planned in the AFTA for enforcing a single re-

configuration authority. However, the NE only permits fault-masking groups to perform a

CT update.

The Network Element contains a global synchronous timer which is synchronized to

the fault-tolerant clock (FTC). This timer is used as the basis for calculating timeouts by the

scoreboard and for providing timestamps on packets. Because the timer is synchronized to

the FTC, the value can be considered congruent among all FCRs. The timer is initialized to

zero upon system reset and is realigned by voting during the reintegration process.

Another support function is initial synchronization, or ISYNC. When the AFTA is In'st

powered up, the Network Elements arengt synchronized. ISYNC is the procedure by

which the Network Elements become synchronized. The two subsections of the NE that

require synchronization are the fault-tolerant cl_k and the global controller. The fault-toler-

ant clocks, designed using standard FTC techniques, will become synchronized automati-

cally within 190_s. The global controllers, however, must explicitly synchronize them-

selves. The ISYNC procedure involves C0_tinual exchanges, using the 2 round source

congruency exchange, to determine which NEs are ready to synchronize.

Recovery of a Network Element following a transient fault in the NE uses a process

similar to the ISYNC function. An NE that is trying to recover performs continual 2 round

exchanges. The remaining NEs in the working group reintegrate the recovering NE by per-

forming a single 2 round exchange. If the working group detects the recovering NE, the

NEs are resynchronized and realignment is initiated. During the realignment process, the

configuration table and global synchronous timer are exchanged and voted. This operation

ensures that the state of the newly reintegrated NE is consistent with the rest of the system.

At the conclusion of realignment, the recovering NE is considered completely reintegrated

with the working group.
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TheNetwork Elementis alsoresponsiblefor monitoringcertainaspectsof thesystem

to aid in thediagnosisof faults.The NetworkElementmaintainsbit vectors,calledsyn-

dromes,to indicatewhencertainunusualbehavioris observed.Thesesyndromescanindi-

cateproblemswith virtual groupmembers,NetworkElements,or FCRinterconnects.The

syndromesaredeliveredwith eachpacketexchangedbythevirtual bus.Someof thesyn-

dromesapplyspecificallyto the associated packet; others are simply an accumulation since

the last packet delivery. Note that all Network Elements will not necessarily see the same

error conditions, therefore the syndromes must be treated as single-source data.

4.4. AFTA Network Element

The Network Element is the core of an AFTA cluster. The Network Element connects

on one side to a number of processing sites, and on the other side to the other Network El-

ements in the cluster. The ensemble of Network Elements forms a virtual bus network

through which the processors communicate.

4.4.1. Network Element Addressing Convention

An applications program for the AFTA can almost always ignore the physical AFTA

configuration, and use only the virtual configuration as the programming model. Using the

virtual configuration, there is no need to refer to a specific Network Element or FCR, since

these concepts only exist in the physical configuration. Systems programs (including de-

vice-drivers) however, must occasionally refer to a specific Network Element or FCR. Ex-

amples of these situations include reading or writing I/O devices, performing system re-

configuration (via CT updates), and diagnosing of faults.

The method of referencing an NE or FCR is known as Network Element addressing.

Each Network Element is assigned a unique ID number. The NEIDs are assigned as shown

in Figure 4-3. Note that successive NEIDs can be found in a counter-clockwise pattern

around the ensemble of NEs.
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NE A

Figure 4-3. Network Element Addresses

FCR IDs are taken from the NEID of the Network Element in the FCR. Henceforth, the

terms FCR ID and NEID will be synonymous.

Absolute addressing refers to a specific Network Element based on its position as ob-

served from outside the cluster. For absolute referencing (i.e. NE A, NE D, etc.) the IDs

are represented numerically as follows:

A=0
B=I
C=2
D=3
E=4

Relative addressing is used to refer to a Network Element based on the referenced NE's

position relative to the local NE. In previous versions of the FTPP, relative addressing

used the form of left, fight, opposite, mine. To provide consistent referencing for the

AFTA, with up to 5 NEs, relative addressing is determined by assigning the address CH 0

to the local NE. Then, continuing counter-clockwise beginning with the NE to the right of

the local NE, successive relative addresses are assigned to each NE. Relative IDs are repre-

sented numerically as follows: -

CH0--0
CHI=I
CH 2=2
CH3 = 3
CH4=4



By convention,this documentusesthe letterdesignations(i.e. NE A, NE B, etc.) to

indicatethe absoluteaddress,andthenumericalchanneldesignation(CH 0...CH4) to in-
dicatetherelativeaddress.However,theAFTA hardwareuses3-digit binarynumbersas
outlinedabovefor bothaddresses.

For situations where bit patterns represent masks or error syndromes, the numerical

address represents the bit position within the byte. For example, an absolute mask for the

AFTA has the form:

7 6 5 4 3 2 1 0

Figure 4-4. Absolute Mask

A relative mask for the AFTA has the form:

7 6 5 4 3 2 1 0

Figure 4-5. Relative Mask

To allow for ease of future expansion, unused bit positions are left undefined rather

than used for packing multiple masks or error syndromes into a single byte.

The absolute numerical address can be derived from the relative address by the follow-

ing:

absNEID = (relNEID + myNEID) % numNEs

Conversion of bit patterns from relative to absolute reference can be accomplished by

the following (assuming that undefined bit positions are cleared):

absMASK = (relMASK << myNEID) i (relMASK >> (numNEs - myNEID)

_ Network Element Functional Description

This section describes the functions of the AFTA Network Element. The functions

provided by the Network Element include the primary data exchange primitives and the

secondary system maintenance primitives.



4.4.2.1. Data Exchange Primitives

The AFTA Network Element provides a number of data exchange primitives for the

Processing Elements to use. The primary use of the primitives is to transfer data from one

virtual processing site to another. The primitives are also be used to vote common-source

data or distribute single-source data within a virtual processing site. The primitives also

have various side effects, including synchronization, time stamping, and syndrome report-

ing. A special set of primitives are provided which produce side effects that directly affect

the state of the Network Element. These special primitives include CT updates, transient

NE recovery, and voted resets. Most of these primitives are solely for the use of the AFTA

operating system. When the application program requests inter-VG communication, the

AFTA operating system transparently maps the task's communication request to the appro-

priate data exchange primitive in the manner described in Section 5.

The processor uses the same procedure to access any of the primitives. Data is trans-

ferred from a physical processor to the ass_iated Network Element through the proces-

sor's output buffers. First, the processor must select a contiguous segment of 64 bytes

within the output data block. Next, the segment is filled with the 64 bytes of data (unless

the class 0 primitive is being used). Then, the buffer descriptor located in the output info

block is f'dled with the appropriate information. The output info block specifies the primi-

tive to be executed, the destination virtual group, and the location of the data in the output

data block. Finally, the ownership of the output buffer is transferred to the Network Ele-

ment by performing the send operation on the ring buffer manager.

The Network Element transfers data to processors through the input buffers. The Net-

work Element selects the next free cell in the ring buffer for the processor and fills the data

and info fields in that cell. Then, the cell is enqueued for ownership by the processor. The

processor must access the cells in the order in which ownership is transferred from the NE

to the PE to preserve total packet ordering. When the PE detects a cell which it owns in its

input buffers, the PE must transfer the data and descriptor information from the cell into lo-

ca/memory and return ownership of the cell to the Network Element. The emptying of in-

put buffer cells must be a high priority operation since the longer buffers are allowed to re-

main full, the more likely flow control will be asserted.

The processors use the ring buffer manager to control ownership and determine owner-

ship status of its buffer cells.



Theprocessorusesasendoperationto transferownershipof anoutputbuffercell, and

areturnoperationto transferownershipof an inputbuffercell.Note thattheprocessorcan

only relinquishownershipof cells to theNE; theprocessordoesnothavethecapabilityto
overtlyacquireownershipof cells.

Thestatusof aprocessor'sbuffersis determinedby eitherthereadyoperation,for out-

put buffers, or the next operation,for input buffers. Eachof theseoperationsreturnsa
pointerto thebuffercell thatmustbeusedin theappropriatering buffer.In thecurrentNE

implementation,theoutputbufferonly hasonecell, sothereadyoperationalwaysreturnsa

pointerof 0. Thenextoperationreturnsa pointerbetween0 and31, inclusive.Eachopera-

tion alsoreturnsaninvalid bit that,whenclear,indicatesthatthepointerisvalid. If thepro-

cessordoesnotown anycellsin theassociatedbuffer,the invalid bit will beset.

4.4.2.1.1. Class 0

The class 0 primitive is used when only the side effects of a data primitive are needed.

The class 0 does not exchange any data. When a virtual group executes a class 0 primitive,

all of the descriptor information in both the output and input info blocks is defined. All of

the infomaation is valid, except for the vote syndrome, which is undefined.

The data in the output data block does not need to be defined, but the pointer in the out-

put info block must point into the processor's own output data block. The data in the input

data block is not guaranteed to be congruent among members of the destination virtual

group and must be ignored.

4.4.2. 1.2. Class 1

The class 1 primitive performs a singe round of exchange and vote on data from a fault-

masking virtual group (FMG). Only FMGs are allowed to execute the class 1 primitive,

since at least 3 independent copies of data are required for an unambiguous bitwise majority

vote.

The output data block of the source virtual group contains the copy of data to be voted

from the local processor. The input data block of the destination virtual group contains the

voted result. The contents of the input data block may be considered congruent among

members of the destination virtual group.
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4.4.2. 1.3. Class 2

The class 2 primitive performs a two round, or source congruency, exchange on data

from any virtual group. The source of the d_ita may be a simplex virtual group or a single

member of a fault-masking group. The class 2 primitive is the only mechanism by which

simplexes are allowed to communicate with other virtual groups.

The output data block of the source virtual group member contains the data to be dis-

tributed by the class 2 primitive. The data in the output data blocks belonging to virtual

group members who are not sourcing data is ignored by the Network Element. The input

data block of the destination virtual group contains the exchanged data. The contents of the

input data block may be considered congruent among members of the destination virtual

group.

4.4.2.1.4. Broadcasts

Broadcasts are a useful means of transmitting data to all active virtual groups in the

cluster. Broadcasts are more of a drain on system resources than the standard point-to-point

communication primitives, so only FMGs are allowed to send broadcasts. The use of

broadcasts should be minimized.

The broadcast primitive is invoked as a modifier to the existing exchange primitives.

Any of the primitives, including the data exchange and the special primitives, can be deliv-

ered as a broadcast. If a broadcast is used, the ToVID field in the output info block is ig-

nored. A virtual group can determine that a received packet was delivered as part of a

broadcast by examining the broadcast modifier bit in the class field of the input info block.

The contents of the input data block c_m be considered congruent among all operational PEs

in the cluster, unless the packet was delivered as pan of a class 0 broadcast primitive.

4.4.2.2. Configuration Table Updates

The Network Element must keep track of the grouping of physical processors into vir-

tual groups. The NE uses a data structure known as the configuration table, or CT, to con-

tain this mapping. The CT also contains information for timeouts and vote masks. The CT

is modified whenever any of this information must be changed. The CT update primitive is

used to update the CT in a synchronous and atomic manner. Only a fault-masking group is

allowed to execute the CT update primitive, unless there are no FMGs in the cluster. The
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CT update must be done with a class 1 exchange class, unless a simplex is performing the

CT update under the previous exception.

The configuration table on the NE consists of a number of entries, with each entry cor-

responding to a potential virtual group. Not all of the potential virtual groups will necessar-

ily be active at any one time. The CT update primitive modifies a subset of the CT entries in

one atomic action. Up to eight CT entries can be modified with a single CT update primi-

five, enough to allow one complete quadruplex to be formed or disbanded from or to its

constituent simplex virtual groups. Multiple virtual groups can be formed or disbanded by

one or more successive CT updates.

Each entry in the CT update packet is a direct replacement for the selected entry in the

configuration table. The entry contains the VID number, which selects the CT entry to be

updated. The entry also specifies the redundancy level of the new virtual group, a mask

detailing which members of the virtual group are considered to be functional (for data vot-

ing), and the value to be used for timeouts on the virtual group. Finally, the entry contains

a list of the physical processors that make up the virtual group. The list specifies the Net-

work Element ID to which the processor is connected and the buffer set the processor uses

_o communicate with its Network Element. The list is only as long as is indicated by the re-

dundancy level of the entry.

4_A4.2.3. Initial Synchronization

Initial synchronization, or ISYNC, is the procedure by which the Network Elements

become synchronized at power-up or after a system reset. The ISYNC process can be ini-

tiated by either a processor connected to an NE or by the global controller on the NE. The

latter is only an option for systems in which the microcode is non-volatile.

The following indicate the expected condition of the system after power-up.

• FFCs self-synchronize within S seconds

• < F FCRs are faulty

• all functioning FCRs were powered-up or reset within T seconds of each other
(i.e. maximum skew is T seconds.)

• Cardinality and connectivity requirements to survive F Byzantine faults are satis-
fied.

From the above assumptions, it is clear that the system meets the requirements for

Byzantine resilience if a means for exchanging single source data is provided. However,
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the skew is unacceptable for operational mode. The purpose of ISYNC is to reduce the

skew to acceptable levels.

The condition of being in ISYNC mode is treated as a piece of single source data. By

exchanging this data through a source congruency, each FCR reaches a consensus about

the relative synchronization state of the cluster.

A message suing indicates the synchronization state of the cluster. Each FCR has one

entry in the message suing. Nominally the message suing is:

m0 ml m2 m3 m4

which indicates that all FCRs are ready to synchronize. The presence of message mi

(mi = 0x0AEC6BF0, for all i) indicates that FCR i is ready to synchronize. A message xi,

where xi _ mi, indicates that FCR i is not ready to synchronize. All non-faulty FCRs

which are not ready to synchronize are designed to send xi rather than mi. An example of a

message suing which indicates that only FCRs 1 and 4 are ready to synchronize is:

x0 ml x2 x3 m4

Each message in the message string is a single-source message from the respective

FCR. Consequently, the messages must be exchanged using a 2-round source congruency

algorithm.

The algorithm for performing ISYNC is as follows. At startup the ISYNC message

suing is exchanged using a 2 round exchange. Each FCR broadcasts the message xi until

the ISYNC initiator requests message mi. The ISYNC initiator must walt at least (T+S)

seconds after power up before requesting mi. An ISYNC timeout with a timeout period > T

is started after 2F+l valid messages are observed in the message suing. ISYNC is termi-

nated when one of the following conditions is met:

• all valid messages are observed in the message string

• the ISYNC timeout period expires.

Figure 4-6 illustrates the timeline for 5 Network Elements performing the ISYNC al-

gorithm.
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Figure 4-6. ISYNC Procedure

ISYNC is attempted for a period of 2T seconds. If ISYNC has not succeeded by this

time, the NE terminates ISYNC and enters the transient NE recovery procedure. The tran-

sient NE recove"y procedure is described in Section 4.4.2.4.

4.4.2.4. Transient NE Recovery

The transient NE recovery procedure, or TNR, is similar to the ISYNC procedure.

Transient NE recovery is used to reintegrate a failed NE. An NE which has suffered a

transient failure may not have any permanent faults that prevent it from functioning as a

member of the cluster. However, the NE must be resynchronized and realigned with the

working group before it can be declared non-faulty.

An NE which has suffered a transient failure may have been reset by a voted reset, the

watchdog timer, or the power-on reset. The NE will enter ISYNC mode as a part of the

boot procedure. This NE has no way of knowing that a working group exists. It will at-

tempt to perform exchanges of the ISYNC message string as defined in Section 4.4.2.3.

Since the working group is performing other packet exchanges, the ISYNC procedure will

fail. After a period of 2T, the failed NE will terminate ISYNC and enter TNR.

The TNR procedure is similar to the ISYNC procedure. The same message string is

used to determine whether or not a particular NE is in TNR or not. The major difference is

that TNR is terminated immediately whenever any new Network Elements are observed in
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themessagesuing.ThecurrentNE mask(asdefinedin Section4.4.3.3.2)is usedasa ref-
erencefor themessagestring.For thisreason,the workinggroupmust settheirNE mask

to reflectthecurrentworkinggroupconfigurationbeforeexecutingTNR.

ThefailedNE entersTNRafterfailing ISYNC.TheworkinggroupentersTNR whena

virtual grouprequeststo sendatransientNE recovery(TNR)packet.A singleTNR packet

exchangeis performed,andtheresultingmessagesuingis examinedbytheNEsto deter-

mine if anynew NEs, ascomparedto theNE mask,arepresent.If no new NEsareob-

served,thefunctioningNEsreturnto theoperationalmodeunscathed.UponenteringTNR
from ISYNC, a NetworkElementremainsin theTNR stateindefinitely unlessanduntil a

successfulTNR exchangeis observed.If theTNR operationis successful,as indicatedby

oneor morenewNEsobservedin themessagestring, theCT is exchangedandvotedinto
thenewlyrecoveredNE(s).

Successfulcompletionof TNR requiresalignmentof thestateof thereintegratedNE to

reflect thestateof theworkinggroup.Theconfigurationtableis alignedbyexchangingand

voting theentirecontentsof theCT.Timeoutsin thescoreboardarealignedbyresettingall

timeouts,whicheffectivelyrestartsall packetreadyandflow control conditions. The global

synchronous timer is realigned by exchanging and voting the timer value. One consequence

of voting the timer is that the timer value effectively stops incrementing until the realign-

ment of the timer is complete. The packet buffers in the recovered NE are set to their initial

condition after power up.

Normally all PEs in the reintegrated NE are declared as inactive spares (i.e. simplexes).

The state of these PEs is assumed to be the same as a freshly powered-up processor. These

spares can be integrated into an existing virtual group by a CT update following successful

completion of TNR. Alignment of these PEs with an existing virtual group is the respon-

sibility of the reconfiguration authority task. The reconfiguration authority is also respon-

sible for broadcasting the current system configuration to these new PEs.

The functioning NEs assume that the recovering NE has resynchronized its FTC to the

remaining ensemble and has entered TNR mode. For this reason, a functioning ensemble

must wait at least 2T seconds after performing a voted reset before attempting TNR.

4.4.2.5. Voted Rescta'/Monitor Interlocks

The AFTA architecture is designed to tolerate any single random fault. In addition, the

system is designed to allow attempts to restart a failed element or reconfigure around the
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failedelement.Voted resets are a mechanism to attempt recovery from transient faults, and

monitor interlocks are one mechanism for reconfiguration around permanent faults. Voted

resets and monitor interlocks are exchanged along with data exchanges on the interconnect-

ing fiber optics. No additional interconnects are required to distribute this information.

If a virtual group detects a Processing Element or Network Element in error, the virtual

group may try to restart the element by asserting a voted reset. A voted resetcan be directed

to either a single Processing Element within an FCR, or to the entire FCR. Since resetting a

Network Element also resets all processors attached to the Network Element, there is no

separate provision for just resetting a Network Element. Only a fault-masking group is al-

lowed to assert a voted reset, unless there are no FMGs in the cluster. The voted reset

primitive must be done with a class 1 exchange class, unless a simplex is performing the

voted reset under the previous exception.

When an entire FCR is lost due to some sort of catastrophic failure, all of the I/O on the

lost FCR becomes unavailable. Critical I/O is usually replicated in multiple FCRs, so that a

one FCR can take over I/O activity for another FCR if the second FCR fails. The first FCR

must obtain access to the I/O device, and the second FCR must be disabled from driving

ti_e device. A monitor interlock can be used to attempt to turn off the driver in the failed

FCR to allow the new FCR to assume ownership of the device. Only a fault-masking

group is allowed to assert a monitor interlock, unless there are no FMGs in the cluster. The

voted reset primitive must be done with a class 1 exchange class, unless a simplex is per-

forming the monitor interlock under the previous exception.

The built-in support on the Network Element for voted resets and monitor interlocks

includes a special packet type for executing the primitives and a set of discrete outputs for

invoking the desired side effect. The discrete outputs are only asserted for one FTC cycle

following the exchange of the voted reset or monitor interlock packet. Additional support

circuitry may be required to interface the discrete output to processing or IIO elements.

4.4.2.6. Syndrome Reports

The Network Element places syndromes in the input info block whenever a packet is

successfully delivered to a virtual group. The syndromes must not be considered congruent

across all members of a destination virtual group.
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The syndromesindicatevariousanomaliestheNetworkElementobservesduring the

executionof anexchangeprimitive.Thesyndromescanbedividedinto twomajorclasses:

NE syndromesandscoreboardsyndromes.

TheNE syndromes indicate any anomalous behavior detected anywhere on the NE ex-

cept within the scoreboard. The NE syndromes, located in the second longword of the in-

put info block buffer cell, include indications of vote errors, fault-tolerant clock synchro-

nization errors, and fiber-optic link errors.

The vote syndrome indicates that one or more channels did not agree with the final

voted result. For a class 1 exchange, a vote syndrome means that the channel did not pro-

duce the expected output. For a class 2 exchange, a vote syndrome means that the channel

did not forward the correct value during the second exchange round. Since the second

round of a class 2 is completely contained within the Network Element, the Network Ele-

ment is indictext by a vote syndrome on a class 2 exchange. Either the processor or the

Network Element is indicted by a vote syndrome on a class 1 exchange. The vote syn-

drome is undefined for a class 0 exchange.

The clock and link syndromes are not necessarily associated with the packet on which

they are delivered. Each syndrome represents an occurrence of the indicated error at some

time between delivery of the previous packet and delivery of the current packet.

The clock syndrome indicates that the rising edge of the fault-tolerant clock (FTC) sig-

nal from the associated channel did not fall within the acceptable skew with reference to the

local FTC signal. Since the local channel is always synchronized with itself, the clock syn-

drome bit corresponding to the local channel, bit 0, will always be zero.

The link syndrome indicates that a violation was reported by the TAXI receiver chip for

the associated channel. A violation indicates that the TAXI received an invalid pattern over

the fiber-optic interface. Violations are usually a sign of catastrophic failure in the affected

Network Element or a break in the physical fiber-optic link. Since there is no TAXI re-

ceiver chip associated with the local channel, the link syndrome bit for the local channel, bit

0, will always be zero.

The scoreboard syndromes indicate anomalous behavior detected by the scoreboard

during SERP processing. The scoreboard syndromes, located in the third longword of the

input info block buffer cell, include indications of scoreboard vote errors, OBNE timeouts,

and IBNF timeouts.
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Thescoreboardvotesyndromeindicatesthatone or more channels of the source virtual

group did not agree with the voted result for the class, destination VID, or user byte. Data

in the SERP is exchanged using a 2 round exchange, voted in the data paths, and voted

again in the scoreboard. The scoreboard vote syndromes only indicate vote errors detected

during voting in the scoreboard; there is no indication of vote errors during data path voting

of the SERP.

The OBNE timeout syndrome indicates that the associated virtual group member(s) did

not place a packet in their output buffers within the timeout skew of the majority of the vir-

tual group members. The timeout skew is specified by the rime, out field in the CT entry. All

members are expected to transmit a packet simultaneously, within the timeout skew. If a

majority' but not a unanimity, of virtual group members are observed with packetsin their

output buffers, a timeout is initiated. If the timeout expires before the other members

transmit the packet, the remaining members are ignored, the packet is exchanged, and an

OBNE timeout is recorded.

The IBNF timeout syndrome indicates that the associated virtual group member(s) did

not deassert flow control on their input buffers within the timeout skew of the majority of

the virtual group members. The timeout skew is specified by the timeout field in the CT

entry. All members are expected to free space in their input buffers simultaneously, within

the timeout skew. If a majority, but not a unanimity, of virtual group members are ob-

served with deasserted flow control on their input buffers, a timeout is initiated. If the

timeout expires before the other members empty their input buffers, the remaining members

are ignored, flow control is deasserted for the virtual group, and an IBNF timeout is

recorded.

4.4.2.7. Timestamns

The Network Element places a timestamp in the input info block for each packet suc-

cessfully delivered to a virtual group. The timestamps are congruent across all members of

the destination virtual group, and across all active processors in the case of a broadcast.

The timestamp is a 32-bit quantity that indicates the relative time within the cluster. An

external time source (such as a GPS reference or a time-of-day clock built into the PEs) can

be used to add a constant to the timestamp to gauge absolute time. The resolution of the

timestamp value is 1.28t_s. The maximum timestamp value is 4,294,967,295, or

0xFFFFFFFF, which corresponds to approximately 5500 seconds. When the timestamp
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counter reaches the maximum value, it wraps around to 0 with no indication to the proces-

sor. The processors must obtain timestamps often enough to detect wraparound.

The timestamp counter is initialized to zero during ISYNC and increases monotonically

thereafter, except during transient NE recove_ (TNR). When a Network Element is reinte-

grated using TNR, the timestamp counters are realigned as part of the recovery process to

ensure congruency of the timestamps. This realignment causes the timestamp counters to

cease increasing until the realignment is complete. Consequently, the timestamps after TNR

will be slightly smaller than they would be if TNR were not performed. The processors can

correct this error by estimating the timestamp error by measuring the duration of TNR us-

ing internal timers and applying a correction constant to the new timestamps.

4.4.2.8. NE Debug Commands

The following describes the debug commands supported by the Network Element de-

bugger. These commands are implemented in a special version of the microcode. The de-

bug commands can be used to debug new Network Element hardware and for performing

stand-alone self-testing of the Network Element.

wrap_vme(bytel,byte2)-Copies byteI to the VDAT bus register, then copies the
VDAT bus register to byte2.

wrap_serp(proc,serp_entry)-Generatcs the SERP entry for proc and returns it in

serp_entry.

wrap_to_input(pack,proc)-Copies Pack (64 byte packet) to the selected input
buffer.

reflect.from(channeO-Reflects the packet stored in the selected channel to the
VDAT bus. Any channels which have their debug routers enabled or are

connected to a fiber-optic wrap path will receive the reflected data.
vote_deliverl(proc)-The packet in the data path FIFOs is voted and stored in the in-

put buffer selected by proc. Voting rules for Class I (voted) exchanges are
used (PE mask ANDed with _ mask)

votedeliver2(proc)-The packet in the data path FIFOs is voted and stored in the in-
put buffer selected by proc. Voting rules for Class II (source congruency)
exchanges are used (NE mask with source masked out).

clear_output(proc)-Clears the selected processor's output buffer.
clear_input(proc)-Clears the selected processor's input buffer.
clear_datap(channel)-Clears the selected channel's data path FIFO.
write..panern(pattern)-Writes a pre-determined byte pattern into pattern.

write_pe_maz'k(mask)-Writes mask to the PE mask register in the data path voter.

write ne mask(mask)-Writes mask to the NE mask register in the data path.voter.
ct_enTer(-dtentry)- The configuration table entry specified by ctentry is copied into

the CT on the NE. A scoreboard CT update is not performed.
ct_update(ctentry)-The configuration table entry specified by ctentry is copied into

the CT on the NE. Then, a scoreboard CT update is performed.

mask_update(mask)-Updates the NE mask in the configuration table.
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process__serp( serp ,class,proc Jromvid, tovid,pemask, nemask )-serp is entered into
the DPRAM of the scoreboard. Then, the global controller requests the
scoreboard to process serp. The results of the processing are returned to the

debugger through the VME DPRAM.
next_message(class,proc fromvid, tovid,pemask, nemask)-The scoreboard is re-

quested to continue processing a previously entered serp and return the next
message ready to be sent.

lerp_to_dpram(lerp)-Generates a LERP message for the local NE and copies it to
the data DPRAM. This LERP is never exchanged or used by the score-
board.

return_time(timestamp)-Returns the 32-bit value stored in the global synchronous
timer.

write_debug_enables(enablepanern)-Selects each debug router (for external chan-
nels only) to receive data either from the external interface (via the TAXI re-
ceiver for that channel) or from the local data source (the VDAT bus).

infinite loopO-The global controller jumps to a single-state infinite loop. The
-watchdog timer is not kicked during the loop, so the NE should be reset by
the watchdog timer after the timeout period has expired.

4.4.3. Network Element Programming Reference

This section describes the procedures for accessing the Network Element from the Pro-

cessing Elements. The section defines the memory map of the NE, the format of data and

control registers on the Network Element, and packet formats used by the data exchange

primitives to transmit data between virtual groups via the Network Element.

4.4.3.1. Processor�Network Element Interface

Processors communicate with the NE via the VMEbus. The processors must be capable

of performing VME bus master functions A24 and/or A32, and D32. The processors must

also function as A16 and D08(o) slaves. Packet data is transferred by the processor to and

from the Network Element using the processor master modes. The NE delivers mailbox

interrupts to the processor using the slave modes.

The Network Element responds to both supervisor and user address modifier codes,

allowing applications software to write directly to the Network Element. Should it be nec-

essary to prevent user accesses, simple modifications can be made to the Network Elements

so that only supervisor address modifiers are acknowledged.

Byte ordering in the NE VMEbus ports follows the Motorola convention, a.k.a, big

endian, with the most significant byte in the lowest address. Any Processing Element se-

lected for use in the AFTA is expected to comply with the byte ordering convention speci-

fied by the VMEbus.
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The baseaddressof the NE must bepn a 64K byte boundary (i.e. lower 16 bits

cleared). All accesses to the Network Element by the PEs are 32 bit cycles. Some NE ports

may not define all 32 bits of the accessed word. In fact, some locations are accessed for

their side-effects and have no data associated with them.

The Network Element has the capability of delivering a signal to the processors. The

NE can perform I308(o) master cycles in the A16 address space of the VMEbus. The actual

location and the data to be written can be specified for each processor. The location may be

a memory location in the processor's RAM or it may be a register for a processor mailbox

interrupt, depending on the Processing Element chosen. The signal can be delivered on

packet transmission, packet reception, or on the input buffer full (IBF) condition. Mi-

crocode changes select the signal delivery condition.

4_4.3.2. Memo_. Map

A memory map of the NE as viewed from the VMEbus is shown in Figure 4-7. The

memory map is divided into two main segments. The first is the data segment, which is

used to transfer data between the processors and the Network Element. The data segment

also contains status and control registers for each processor. The data segment maps into

the DPRAM memory on the NE. The second segment is the buffer manager. The buffer

manager regulates the use of the dual-port RAM to prevent contention for data resources

between the processors and the NE.

NEbase+O0000

10000

i

Data

segment

BufMgr

segment
I Dual-Port RAMBuffer Manager

Figure 4-7. NE Memory Map

Each Network Element is attached to a maximum of 8 processors. Each processor has

its own window of addresses in the DPRAM and its own set of ports in the buffer man-

ager.

4.4.3.2.1. Data Segment

The data segment is implemented with 4 4K x 8 dual-port RAM devices. These devices

provide data buffering between the NE and the PEs. Because it is dual-ported, each side

can access the data segment asynchronously, provided that they do not access the same 1o-
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cation.Arbitration to preventsimultaneousaccessis performedby thebuffer manager.A

PE's adherenceto thebuffermanagerarbitrationmustbeensuredby theoperatingsystem

messagepassingsoftware,i.e. thereis nohardwareenforcement.Systemsoftwareon the

PEmustbewritten to follow theownershiprulesof buffercellsin thedatasegment.Fail-

ure to adhere to the ownership rules describedin Section 4.4.3.2.2 could result in

overwritinganincomingpacketor, in theworstcase,thedesynchronizationof theNE.

Thedatasegmentis dividedintoequalsizedwindowsfor eachof themaximumof eight

processorsper NE. Eachprocessorhasan identical structuresuperimposedon this win-

dow.Thestructureof thedatasegmentis shownin Figure4-8.

Eachprocessorwindow in thedatasegmentis dividedinto 5 blocks;four areusedfor

packettransferandoneis unused.Thefour usedblocksarepairedinto input andoutput
datablocks.Oneof the blocksin eachpair is usedfor actualdatacommunication;these

blocksarereferredto asdatablocks.Theotherblocks,knownasinfo blocks,containin-

formationpertainingto thedatain thecorrespondingdatablock.
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4.4.3.2. l. 1. Outgoing CDansmit) Bufferin_

The output ring buffer is used to send packets to the NE virtual bus. The output data

block and the output info block comprise a ring buffer of 1 cell. The output ring buffer cell

consists of 64 bytes in the output data block and 8 bytes in the output info block. Only the
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locations in the output info block are associated a-priori with the buffer. The bufptr field in

the info cell points to the beginning of the data cell in the output data block. The output data

block is a flat memory-mapped section that can be used at the processor's discretion. The

output data cell is considered to be a contiguous 64 byte block starting at the location indi-

cated by the value of bufptr. If the output info Cell is owned by the NE, the data cell is also

considered to be owned by the NE. All other locations in the output data block are owned

by the PE.

When the processor wants to send a packet to the NE, it first makes sure that the output

buffer is empty by either polling the buffer manager waiting for the OBF (Output Buffer

Full) bit to be deasserted (low), or by waiting for the packet transmit signal from the previ-

ous packet transmission (if the NE-PE signal is enabled for the packet transmit condition).

Next, the processor finds an unused 64 byte cell in the output data block. A 64 byte block

must be allocated even if no data is to be exchanged. The pointer to the cell is entered in the

bufptr location of the output info cell. The header information is copied into the other loca-

tions in the info cell, and the data (if any) is copied into the data cell allocated above. Fi-

nally, the packet is sent by informing the buffer manager that the ring buffer cell contains a

valid packet. The processor is informed, either through the buffer manager OBF bit or the

packet transmit signal, when the packet is sent and the ring buffer cell can be used for an-

other packet.

When the NE observes an output buffer which contains a valid packet, the NE ensem-

ble determines, using the scoreboard, whether this packet represents a packet to be ex-

changed, voted, and delivered by the NE data path hardware. If the packet is validated by

the scoreboard, the NE reads the packet from the buffer and returns ownership of the

buffer to the processor. The processor must not access the buffer until it is returned by the

NE.

4.4.3.2.1.2. Incoming (Receive) Bufferin_

The input ring buffer is used to receive packets from the NE virtual bus. The input data

block and input info block together comprise a ring buffer of 64 cells. Each cell in the input

ring buffer consists of 64 bytes in the input data block and 16 bytes in the input info block.

Each cell in the input data block corresponds to a cell in the input info block.

Once a packet is validated for transmission, the NE exchanges and votes the packet.

The voted packet is then delivered to the receiving virtual group's input buffer along with
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the headerinformation.WhentheNE wantsto delivera packetto a processor,it f'trstob-

tainsa ring buffer cell from thebuffer manager.Then, thepacketdatais written into the

properdatacell, andtheheaderinformationis writteninto the infocell.Next, theNE trans-

fers ownershipof thebuffer to thePEusingthebuffer manager.Thebuffer cell is consid-

eredownedby theprocessoruntil theprocessorexplicitly returnsownershipof thecell to

theNE. Finally, if thepacketreceivesignalis enabled,theNE sendsasignalto theproces-

sorswhichmakeup thereceivingvirtual group.

Whenaprocessorobservesapacketdelivery,eitherby polling theIBE bit or by recep-
tion of thepacketreceivesignal, theprocessorobtainsthe locationof the newpacketby

readingthereadylocationin thebuffermanager.TheReadyIB field indicatesthecell num-
berof theoldestunreadpacketin theprocessor'sinput ring buffer. Theprocessorcopies

thedataandcorrespondingheaderinformationfrom theinput ring buffer cell into thepro-
eessor'slocal memory.When theprocessoris donewith thering buffer ceil, thecell is

freedfor useby anotherpacketby accessingthereturnlocationin thebuffermanager.

Broadcastpacketsare deliveredto all input ring buffers within an AFTA cluster,

whetheror not theassociatedprocessoris amemberof anactivevirtual group.

4.4.3.2.1.3. Information Block Fields

The information blocks contain control and status information associated with data lo-

cated in the data blocks. In previous versions of the FTPP, this information was either pre-

fixed or appended to the packets in the data FIFOs, or entered into the class FIFO. A brief

discussion of each field is contained below. In the case of the error fields, a set bit corre-

sponds to an observed error, and a cleared bit corresponds either to observed normal be-

havior or to an undefined channel or FCR.

4.4.3.2.1.3.1. Class

The packet class selects the data exchange primitive to be executed by the NE. The

packet class is a full 8 bit field, yielding a maximum of 256 different packet classes. Indi-

vidual bit fields in the class field define particular aspects of the packet class as shown be-

low in Figure 4-9.

7 6 5 4 3 2 1 0

[_m pack,,ttyp,,I  x h"'Qoc'a's Jmode

Figure 4-9. Packet Class Field
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The exchange class defines the protocol to be used when exchanging the packet. Cur-

rently, the following values are valid:

0-class 0 (no data)
1-class 1 (one round exchange)
2-class 2 (two round exchange) from member on Network Element A
3-class 2 (two round exchange) from member on Network Element B
4-class 2 (two round exchange) from member on Network Element C
5-class 2 (two round exchange) from member on Network Element D
6-class 2 (two round exchange) from member on Network Element E

The packet type defines the contents of the ring buffer data cell. Data packets are the

normal mode of communication between visual groups. Data packets are treated as a con-

tiguous stream of 64 bytes. There is no structure enforced by the NE on data packets. The

other packet types, however, have specific formats that must be adhered to as described in

Section 4.4.3.3. The following are the current valid packet types:

O-data

1-configuration table update
2-transient NE recovery
3-voted reset

The mode determines how the packet is to be distributed. Two modes are supported:

normal (bit 7 is cleared) and broadcast (bit 7 is set). In the normal mode, the packet is de-

livered to the virtual group specified in the ToVID field. In broadcast mode, all processors

(including the sender), regardless of whether or not they are a member of an active virtual

group, will receive a copy of the packet. The ToVID field is ignored for broadcast packets.

Not all packet classes are allowed in all circumstances. The following outlines the

packet exchange rules.

Only a fault-masking group is "allowed to send a packet with exchange class of 1.
Only a fault-masking group is allowed to send a CT update packet.*

The CT update packet must be exchanged using a class 1 (one round) exchange.*

Only a fault-masking group is allowed to send a voted reset packet.*

The voted reset packet must be exchanged using a class 1 exchange.*

Any virtual group can send a class 0 or class 2 packet.
Any virtual group can send a data packet or an isync packet.
Any virtual group can send a normal packet.
Only a fault-masking group is allowed to send a broadcast packet.*

* Unless the HLF (higher-life-form) bit in the scoreboard is not set.
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Undefinedfields andvaluesin the packet class are reserved. Undefined fields must be

set to zero.

4.4.3.2.1.3.2. _D

The ToVID is an 8-bit field specifying the virtual group to which the packet is to be

sent. The VID numbers may range from 0 to 255. Not all VID numbers will be valid, since

there will be at most 40 active virtual groups in the system. If the NE detects an attempt to

send to a non-existent virtual group, the packet is removed from the sending virtual group's

output buffer and discarded.

The ToVID field is ignored for broadcast packets.

4.4.3.2.1.3.3. FromVID

The FromVID field is an 8-bit field specifying the virtual group that sent the packet.

The VID numbers may range from 0 to 255. This field is always valid.

4.4.3.2.1.3.4. User Field

The user field is an 8-bit field for arbitrary use by the processor. The value in the user

field is exchanged and voted along with the SERP data. SERP voting rules are used on the

user field instead of standard class 1 voting rules. The user field can be used to send out-

of-band data between virtual groups.

4.4.3.2.1.3.5. Vote errors

Vote errors indicate if the data emanating from a participant during the packet exchange

disagreed with the majority in any way. For class 1 packets (one round exchanges), the

syndrome bits are only defined for NEs on which the virtual group has members. For class

2 packets (two round exchanges), the syndrome bits are defined for all NEs except the NE

on which the source member resides. Undefined syndrome bits will be cleared. The format

of the vote error field is shown in Figure 4-10. The vote error field is in the relative NE

format.

7 6 5 4 3 2 1 0

Figure 4-10. Vote Error Field
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4.4.3.2.1.3.6. Clock Errors

Clock errors indicate that sometime sincere last packet was exchanged by the NE, the

FTC signal from the indicated NE fell outside the allowable skew window. A clock error

signals a potential problem with the indicated NE or the cable linking the indicated NE with

the local NE. The format of the clock error field is shown in Figure 4-11. The clock error

field is in the relative NE format. The bit corresponding to the local NE (bit 0) is undefined.

7 6 5 4 3 2 ! 0

Figure 4-11. Clock Error Field

4.4.3.2.1.3.7. Link Errors

Link errors indicate that sometime since the last packet was exchanged by the NE, an

error was detected on the indicated fiber-optic link. An error detected by the TAXI receiver

devices is indicated by assertion of the VLTN (violation) signal, which usually indicates

loss of synchronization with the transmitter, A link error signals a potential problem with

the indicated NE or the cable linking the indicated NE with the local NE. The format of the

link error field is shown in Figure 4-12. The link error field is in the relative NE format.

The bit corresponding to the local NE (bit 0) is undefined.

7 6 5 4 "3 2 1 0

Figure 4-12. Link Error Field

4.4.3.2.1.3.8. OBNE timeout

The OBNE timeout (Output Buffer Not Empty) field indicates that the members of the

source virtual group corresponding to the set bits did not request to send the packet within

the allowable timeout skew. These members are considered desynchronized from the other

members of their virtual group until a reintegration procedure is performed on the virtual

group.

The format of the OBNE timeout field is shown in Figure 4-13. The OBNE timeout

field is in the absolute NE format. Only bits corresponding to NEs on which the source

virtual group has members are defined.
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7 6 5 4 3 2 1 0

Figure 4-13. OBNE Timeout Field

4.4.3.2.1.3.9. IBNF timeout

The IBNF timeout (Input Buffer Not Full) field indicates that the members of the desti-

nation virtual group corresponding to the set bits did not free enough space in their input

buffers to hold the incoming packet within the allowable timeout skew. These members are

considered desynchronized from the other members of their virtual group until a reintegra-

tion procedure is performed on the virtual group.

The format of the IBNF timeout field is shown in Figure 4-14. The IBNF timeout field

is in the absolute NE format. Only bits corresponding to NEs on which the destination vir-

tual group has members are defined. The IBNF timeout field is undefined for broadcast

packets.

7 6 5 4 3 2 1 0

Figure 4-14. IBNF Timeout Field

4.4.3.2.1.3.10. Scoreboard Vote Error

A scoreboard vote error indicates that the corresponding virtual group member did not

agree with the majority regarding the type of packet to be exchanged. Scoreboard vote er-

rors are only collected on data contained in the SERP, which includes the packet class, the

destination virtual group (ToV1D field), and the user field.

The format of the scoreboard vote error field is shown in Figure 4-15, The scoreboard

vote error field is in the absolute NE format. Only bits corresponding to NEs on which the

source virtual group has members are defined. The scoreboard vote error field is generated

by the scoreboard and reflects discrepancies observed by the the scoreboard during SERP

processing. Vote errors occurring in the data path voters during the voting of the SERP

during the second round of the SERP exchange are not detected.

7 6 5 4 3 2 I 0

NEE] NED [NEC I NEBI NEAI

Figure 4-15. Scoreboard Vote Error Field

Page 4-2_



4.4.3.2.1.3.11. Timestamp

The timestamp field is a 32 bit field representing the time that the packet was ex-

changed. To be exact, it is the time at which the scoreboard determined that a valid packet

condition existed to allow the packet to be exchanged. The timestamp value is determined

from the global synchronous timer. This timer is initialized during ISYNC or recovery and

increments synchronously with the FTC, The timer wraps around from 0xFFFFFFFF to

0x0 with no indication. The wraparound period is over 90 minutes, which should be plenty

of time to detect wraparound in the operating system. The resolution of the least-significant

bit of the timestamp is 1.281,ts.

4.4.3.2.2. Buffer Manager

The buffer manager controls the status of the input and output buffers for each of the 8

processors connected to the NE. Processors use the output buffers to send packets through

the Network Elements. The Network Elements use the input buffers to deliver packets to a

processor.

Each buffer is owned by either the processor or the Network Element. Ownership de-

pends on the type and the state of the buffer. A processor or the NE must only access

buffers which it owns. Output buffers are i0itially owned by their associated processor,

and input buffers are initially owned by the Network Element. A port can temporarily relin-

quish ownership of a buffer by invoking the SEND operation in the buffer manager. The

buffer is returned to the original owner when the second port invokes the RETURN opera-

tion.

The buffer manager is accessed by the processor using the VMEbus. The processor

status/control ports on the buffer manager are mapped to locations in the VMEbus address

space as shown in Figure 4-16.
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Input
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0 I next OB 110310

4 [ sendOB I 10314

Figure 4-16. Buffer Manager Memory Map

For output buffers, the processor has access to the next and send ports. Reading the

next port yields the OBF bit for the output buffer. Accessing (either reading or writing) the

send port activates the SEND operation, which transfers ownership of the output buffer to

the Network Element. The format of the next port is shown in Figure 4-17. The OBF

(Output Buffer Full) bit is cleared if the buffer is empty and set if the buffer is full. The data

read from or written to the send port is meaningless and must be ignored.

31 28 24 20 16

15 t2 8 4 0

Figure 4-17. Next Port Format

For input buffers, the processor has access to the ready and return ports. Reading the

ready port yields the IBE bit and the Ready-IB pointer. Accessing (either reading or writ-

ing) the return port activates the RETURN operation, which transfers ownership of the in-

put buffer back to the Network Element. The format of the ready port is shown in Figure 4-

18. The IBE (Input Buffer E npty) bit is cleared if the input ring buffer contains at least one

unread packet and is set if the ring buffer is empty. The Ready-IB pointer indicates which

ring buffer cell contains the oldest unread packet. The data read from or written to the re-

turn port is meaningless and must be ignored.
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31 28 24 20 16

I; E -
15 12 8 4 0

Ready IB ]

Figure 4-18. Ready Port Format

System software on the PE must be writ!en to follow the ownership rules of buffer

cells in the data segment. Failure to adhere to the ownership rules described above could

result in overwriting an incoming packet or, in the worst case, the desynchronization of the

NE.

4.4.3.3. Packet Formats

The following section defines the four types of packets that can be sent through the

Network Element.

4.4.3.3.1. Data Packet

A data packet can be exchanged using any combination of the available exchange

classes and modes. The format of a class 1 ora class 2 data packet is simply a contiguous

string of 64 bytes. Any structure imposed on a data packet is done so by the Network Ele-

ment driver software. A class 0 data packet has no data.

4.4.3.3.2. CT Update Packet

The CT update packet is used to modify the configuration table on the Network Ele-

ments. The configuration table (CT) is contained within the Network Element. The CT de-

scribes the mapping of physical processing sites into virtual groups. Processors make

changes to the CT using the CT update packet.

The format of a CT update packet is shown in Figure 4-19. ACT update packet can

update from 0 to 8 CT entries. Unused bits in the CT update entries (shown as shaded re-

gions in the figures below) must be set to zero.
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Figure 4-19.

VID

Redundancy Level

PE Mask

Timeout

Member 0

Member 1

Member 2

Member 3

CT Update Packet Format

Each CT entry consists of 8 contiguous bytes. The first byte of the CT entry in the

packet indicates which virtual group is to be updated. The next byte, shown in Figure 4-20,

specifies the redundancy level to be used for the virtual group. The redundancy level (0-4)

indicates how many members are to be included in the virtual group. A redundancy level of

0 indicates an inactive group.

7 6 5 4 3 2 1 0

_..".,. , .... i _..-.:_-i._: ,,_........_ redundancy level I

Figure 4-20. Redundancy Level Field

The next byte, shown in Figure 4-21 is the PE mask. This field is used to mask out se-

lected members of the virtual group during data voting. A set bit in the PE mask indicates

that the corresponding member should be included in the data vote. Bits corresponding to

NEs with no members in the virtual group must be cleared. The virtual group member is

only masked during voting of data; the member is still considered during timeouts for the

OBNE and IBNF conditions, and during scoreboard data voting. To eliminate the timeout

penalty, the virtual group should be reconfigured to eliminate the faulty member either by

reducing the redundancy level of the virtual group or by incorporating a spare processor to

replace the faulty one.

7 6 5 4 3 2 1 0

Figure 4-21. PE Mask Field

The next byte in the CT update entry is the timeout value. This value selects the timeout

to be used for the virtual group when calculating the OBNE and IBNF conditions. The

timeout is specified with a resolution of 1.281.ts. The maximum timeout value is 326.4p.s



(timeoutfield = 255).A timeoutvalueof zeroenablesan infinite timeoutfor thevirtual

group.Thetimeoutfield is calculatedusing:

field =1 timeout value [
tirneout [ 1.28 Its J

Following the timeout byte is a list of the processors which make up the virtual group.

The processors are specified in a format that uniquely identifies a single processor in the

cluster. The format for the processor specification field is shown in Figure 4-22. The abso-

lute NEID refers to the FCR containing the specified processor. The PEID refers to a single

processor within the FCR. The processor listing starts with the 5th byte in the entry and

continues until enough processors are specified to satisfy the redundancy level. Any extra

bytes are unused. However, to avoid vote errors, these unused bytes must be defined.

7 6 5 4 3 2 1 0

Figure 4-22. Processor Specification Field

VID #255 is unique in that it refers to the Network Element rather than an ensemble of

processors. Updating VID #255 in the CT packet is used to modify the NE mask. The NE

reads a new NE mask from the location normally reserved for the PE mask. All other en-

tries for VID #255 are unused. The format of the NE mask field is shown in Figure 4-23.

7 6 5 4 3 2 1 0

Isrcunlk_ NEE !NED I NEC ]NEB [NEA !

Figure 4-23. NE Mask Format

The bit field <4:0> in the NE mask performs the same function as the corresponding bit

field in the PE mask. Setting a bit in this bit field enables the Network Element. Clearing

the bit disables the Network Element's dataand clock inputs. If a Network Element is dis-

abled, all processors connected to that Network Element are also disabled, even if their PE

mask bit is set.

The src unlk bit in the NE mask allows the source of a two round (or source congru-

ency) exchange to be enabled on voting of the packet. Enabling the source during voting of

source congruency packets when the syste m is in a degraded mode (3 or fewer Network

Elements) allows additional anticipated failures to be tolerated. In a fault-masking mode

(either 4 or 5 Network Elements enabled), the src unlk bit must always be cleared. Setting

this bit violates the rules for Byzantine resilience and may allow single point failures to dis-
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rupt thesystem.However,in a degraded mode, Byzantine resilience is undefined, so set-

ring the src unlk bit is permissible.

ACT update packet must have exactly eight valid C_ entries. CT entries can be re-

peated in the CT update packet with no undesirable (or noticeable) consequences. Also,

unused virtual groups (those with a redundancy level of 0) can be used to pad the CT up-

date packet to a full 8 enlries.

4.4.3.3.3. Transient NE Recovery Packet

The TNR packet is used to invoke the transient NE recovery (TNR) procedure. The

TNR procedure is used to reintegrate a desynchronized FCR. NEs which are reset (by a

watchdog timer, voted reset, or other means), suffer a power supply interruption, or are

powered on after the other NEs have completed ISYNC enter the TNR phase during the

boot procedure. By performing transient NE recovery, a working group of NEs can syn-

chronize a new NE with the working group.

The TNR procedure is invoked by sending a TNR packet. The format of a TNR packet

for transmit is undefined. A TNR packet cannot be used to send user data to another virtual

group. A TNR packet can be of any exchange class, and can be either normal or broadcast

mode. Regardless of the exchange class or the data specified in the output data buffer, 64

bytes, as described in Figure 4-24, will be delivered to the recipient virtual group(s).

The first 5 entries (4 bytes each) of the TNR receive packet are the TNR messages as

sourced by each Network Element. The expected TNR message for each NE is

0x0AEC6BF0.

M(A) .

M(B)

M(C)
M(D)

M(E)

| Result

.-_ .

Figure 4-24. TNR Receive Packet Format
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Thenext entryin theTNR receivepacketis a byte which indicates which NEs sou.rced

the expected TNR message. If the bit in the result byte corresponding to a particular NE is

set, the message entry for that NE should be the expected TNR message.

7 6 5 4 3 2 1 0

Figure 4-25. TNR Result Byte Format

The bytes in the TNR receive packet following the result byte are undefined.

4.4.3.3.4. Voted Reset Packet

The VRESET packet is used to perform the voted reset or monitor interlock operation.

Voted resets enable a working group of FCRs to reset selected pieces of hardware in an-

other FCR, presumably one which has suffered a transient fault or otherwise lost synchro-

nization with the working group. The votedreset operation assumes that certain parts of the

FCR to be reset are functional. Therefore, the voted reset function is a best-effort function;

it is not guaranteed to work in all situations_ There is no risk of catastrophic failure to the

FCRs performing the voted reset.

The format of the VRESET packet is shown in Figure 4-26. The transmit packet and

receive packet are identical. The first byte of the packet contains the VRESET command.

The remaining 63 bytes in the packet are user defined.

VRESET Commanc

-_

Figure 4-26. VRESET Packet

The VRESET packet is always exchanged using a class 1 exchange protocol. Specify-

ing a class 0 or class 2 exchange class in the packet class field is illegal. Only fault-masking

groups are allowed to source a VRESET packet. The packet is delivered to the destination

virtual group (or all virtual groups, in the case of a broadcast) as any other standard class I

data packet. The VRESET command is also loaded into the VRESET transmitter after being
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votedonall NEs.Thecontentsof theVRESETtransmitteraresentto theNE to bereseton

thenextfalling edgeof theFTC.TheVRESETcommandisdeletedfrom thetransmitteron

therisingedgeof theFTC.

Theformatof theVRESETcommandbyteis shownin Figure4-27.TheFCRbit field

indicateswhethera singleelement(bit=0) or the entire FCR (bit=l) is to be reset.The

NE1Dfield selectsoneof the 5 FCRs,usingtheabsoluteaddressingmode,on which to

performthevotedreset.Valid valuesfor theNEID field rangefrom 0 to 4. ThePE/IOCbit
field selectswhethera PE (bit=0) or an IOC (bit=l) is to be resetor interlocked,respec-

tively.The elementnumberfield selectsoneof theprocessorsor I/O elementsto bereset.
Theelementnumberfield andthePE/IOCbit mustbesetto zeroif theFCR bit is set.Un-

definedVRESETcommandsareignored.
7 6 5 4 3 2 1 0

I FCR I NEID ! PE/IOCl PE/tOC Number

Figure 4-27. VRESET Command Byte

4.5. AFTA Component Physical Descriptions

The AFTA is designed for application in hostile embedded environments, such as mili-

tary avionics bays, ground vehicles, or launch vehicles. As such, the AFTA is designed to

meet stringent military requirements for such environments. The military specifies a num-

ber of standards that can be used to build military-qualified hardware. Two examples are

the Standard Army Vetronics Architecture (SAVA) for use in ground vehicles and the Joint

Integrated Avionics Working Group (JIAWG) advanced avionics architecture (A3) for air-

craft. This report studies AFTA designs based on these two standards. It must be noted,

however, that the selection of these standards is made for concreteness of presentation; the

AFTA design is not irrevocably tied to any such decision, nor is any endorsement by

CSDL of these standards for use in the AFTA to be implied.

The AFTA is composed of either four or five fault containment regions (FCRs), each of

which is housed in a line replaceable unit (LRU). The terms LRU and FCR are used inter-

changeably in this report. Figure 4-28 depicts a block diagram of an FCR. The LRU en-

closure comprises a Faraday cage with environmental and EMI-resistant gaskets on all ac-

cess hatches and ports. Each LRU contains a number of line replaceable modules (LRMs).

An LRM is either a Processing Element (PE), network element (NE), input/output con-

troller (IOC), or power conditioner (PC). Except for the power conditioner, an LRM is

usually comprised of a single circuit tx)ard.
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TheLRMs areinterconnectedby a backplane bus for data exchange and power distri-

bution. The PEs access the AFTA Network Element and I/O controllers over the bus. The

backplane bus may use redundancy (for instance, a dual PI-Bus) for additional FCR relia-

bility, or a split bus (for example, a VMEbus with VME Subsystem Bus (VSB)) for en-

hanced throughput. For a SAVA-based AFTA, the backplane bus is the System Backplane

Bus (SBBUS) based on the VMEbus specification; a JIAWG-based AFTA uses the PI-

Bus.

From Vehicle
Power Buses

Fault
Tolerant
Data Bus

Backplane Bus

To/From other NEs

Figure 4-28. AFTA FCR Architecture

Hardware faults are isolated to an LRM using the fault detection, identification, and

testing methods detailed in Section 5.6. Each LRM is separately removable from the AFTA

according to the maintenance procedure outlined in Section 7. Live insertion or removal of

an LRM depends on whether or not the backplane bus in use in the particular AFTA im-

plementation supports live insertion/removal. If live insertion/removal is not possible, the

FCR of which the LRM is a part must be powered down before replacing the LRM. The:

LRMs and LRUs are packaged for exposure to a forward operating environment to permit

field replacement.
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Figure4-29showstheoveralldimensionsof aSAVA-basedAFTA FCR(LRU). This

diagramdoesnot showthepowerconditioners.Note the fiber optical bundleemanating
from theconnectorson thefrontof theenclosure.

Network Element

Conditioner other FCRs

Figure 4-29. SAVA-based AFTA FCR

Figure 4-30 shows the overall dimensions of a SAVA-based single-card LRM. The

96-pin DIN connectors (3 rows) may be modified to contain 4 rows (128 pins) if the LRM

is to reside in an SBBUS section of the FCR; the polyimide multi-layer board (MLB) may

be changed as well depending on military qualification criteria.

i
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Figure 4-30. SAVA-based AFTA LRM

For comparison purposes, Figures 4-31 through 4-32 depict the physical dimensions of

an Ab-'TA fabricated to the JIAWG A3 (version 3.1) standards. The main differences visi-

ble at the current level of detail, besides differences in the bus interface, are that the LRMs

are double-sided SEM-E cards with 250 pins available for connecting to the FCR back-
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plane. Figure 4-31 shows an LRU based on this packaging standard, while Figure 4-32

shows the dimensions of the LRM.

Gasket.

Conduction or Liquid-Cooled
SEM-E Module with Circuit

Boards and Component on
Both Sides.

Baseplate Mounted and Cooled
Chassis with Circular-MIL

Connectors on One End and Single
Side Access for Modules.

Network
Element

Length Dependent
on IX) and

Processing Suite

O_tical Fiber
undle to

Other FCRs

Optical Fiber
Bundle from
Other FCRs

I . , 12in. ,, I

Figure 4-31. JIAWG-based AFTA FCR
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Figure 4-32. JIAWG-based AFTA LRM

4,5.1. Processing Element (PE) Characteristics

The Processing Elements (PEs) are the computational sites in the AFTA. Multiple PEs

can be grouped to form a virtual simplex processing site for increased reliability. Non-criti-

cal tasks can be executed by a single Processing Element to maximize utilization of the pro-

cessing resources. The mapping of PEs into virtual groups, or VGs, is maintained by the

Network Elements. The mapping can be changed in real-time upon a request from the PEs.

Page 4-41
!!



The AFTA may contain more than one type of PE in any given AFTA implementation.

The PEs for the AFTA are generally assumed to be available as non-developmental items

(NDI), and may vary widely from implementation to implementation. The choice of PE

and instruction set architecture (ISA) are completely up to the user of the AFTA. A func-

tional block diagram of the typical components comprising a generic AFTA PE is shown in

Figure 4-33. The PE contains a central processing unit (CPU) with an optional floating-

point unit; multiple CPUs may reside on the PE LRM and may or may not comprise mem-

bers of an AFTA VG, at the user's option. Typically, a local bus is used to communicate

with on-board RAM, ROM, and I/O devices. Timers and oscillators are provided to gen-

erate a local time-of-day clock, time interval measurements, and timer-based interrupts.

Optional local I/O may reside on the PE LRM. A system bus interface is used to gain ac-

cess to the NE over the backplane bus.

CpU/
FPU i l RAM ROM

Timers/
Oscillators

i

i

_ Local I/0
(Optional)

Local Bus
i

System
Bus Interface

Figure 4-33. Functional Block Diagram of an AFTA Processing Element

For illustration purposes, three NDI PEs have been selected for use in the AFTA:

Radstone PMV 68M CPU-3A
Lockheed Sanders STAR MVP
SAVA GPPM

It should be stressed that selection of these PEs is made for concreteness of presenta-

tion; the AFTA is not irrevocably tied to any such selection, nor is any endorsement by

CSDL of these PEs for use in the AFTA to be implied. It should be borne in mind at all

times that the AFTA architecture is very flexible; a wide range of PEs can be used in the
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AFTA, both in initial installations and in p3Is. Selection of appropriate Processing Ele-

ments for a particular AFTA application should be made based on throughput, commonal-

ity, compatibility, and other requirements as dictated by the particular situation.

Relevant characteristics of the selected PEs were gained from preliminary engineering

documentation provided from the vendors and do not reflect commitments on the part of

CSDL or the vendors.
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The RadstonePMV 68MCPU-3Asingle board computer [Rad90] has the characteris-

tics listed below.

Processor Type 25 MHz 68030/68882 FPU

Throughput DAIS Whetstones ri2hLxlll_l_ _ MIPS
2.576M* 5.13M* 8.95M* 8t

Memory

Weight (Estimated)

1.5 Mbyte SRAM, 512KByte EPROM

2 pounds

Power (Estimated) 25W

Volume Height

Depth
Thickness

9.187 inches
6.299 inches

0.063 inches (board)
0.800 inches (front panel)

Failure rate 16,982h MTBF at Ground, Mobile, 45°C

Operating
Temperature
Range

-55 to +85°C

Storage
Temperature
Range

Relative humidity

(Operating)

Cooling
Requirements

-62 to +125°C

0% to 95%, MIL-STD-810D Method 507.4 Procedure III

Conduction cooling through thermal management layer to short card

edges; wedge-lock connection to ATR enclosure

Cost (1991) $23K !i n quantity)

Table 4-1. Characteristics of Radstone PMV 68M CPU-3A Processing Element

* Calculated by Draper.

t Obtained from vendor literature.
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TheLockheedSandersSTARMVP singleboardcomputer[San90] has the characteris-

tics listed below.

Processor Type 25 MHz R3000]R3010 FPU

Throughput DAIS Whetstones Dhrystones VUPS MIPS
• 20f

Memory (typical)
i

Weight

iPower

16 Mbyte DRAM, 256KByte Cache, 1MByte EPROM

2 pounds

20W

Volume Height
Depth
Thickness

9.187 inches
6.299 inches

0.063 inches (board)
0.8_inches:(frbnt panel)

Failure rate

Operating
Temperature
Range

32,000h MTBF at Airborne, Uninhabited, 40°C

-54 to +55°C, continuous

Storage
Temperature
Range

Relative humidity
(Operating)

-62 to +85°C

100%, condensing

Cooling
Requirements

Conduction cooling through thermal management layer to short card
edges; wedge-lock connection to ATR enclosure

Cost (1991) $29K (uS.q._titff 1)

Table 4-2. Characteristics of Lockheed Sanders STAR MVP Processing Element

t Obtained from vendor literature.



The SAVA GeneralPurposeProcessingModule (GPPM) [MIL-STD-344] has the
characteristicslistedbelow.

IProeessorType 16MHz 68020/68881FPU

Throughput DAIS _. betstones Dhrvstones VUPS MIPS
1.03M* 2.05Mr 3.58M? 3.2tt

Memory 128KByte SRAM, 128KByte EEPROM, 64KByte ROM, 4KByte
DPRAM

Weight <2.25 pounds

Power <15W

Volume Height
Depth
Thickness

9.187 inches
6.299 inches

0.063 inches (board)
0.800 inches (front panel)

Failure rate >31,000h MTBF at Ground, Mobile, 85°C @ module edge

Operating
Temperature
Range

-31 to +78°C (NB: evidently inconsistent with failure rate spec)

Storage
Temperature
Range

-57 to +85°C

Relative humidity
(Operating)

94% @ 149°F

Cooling
Requirements

Conduction cooling to short card edges

Cost (1991) . $10K

Table 4-3. Characteristics of SAVA GPPM Processing Element

* Calculated by Draper.

# Measured using XDAda compiler.

tt Obtained from vendor literature.
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4.5.2. Network Element (NE) Characteristics

The Network Elements (NEs) form the core of the AFTA. Each FCR must contain an

lifE; the NE connects the FCR to all other FCRs in the AFTA cluster. The NEs include

hardware to implement functions necessary for the Byzantine resilient properties of the

AFTA. These functions include data exchanges, synchronization, syndrome recording, and

monitor interlocks.

The Network Element design presented in this section is designed for use with the

VMEbus backplane bus. Thus, the NE is compatible with both commercial and military

grade VMEbus systems. The NE is also compatible with the SAVA SBBUS, with the

simple replacement of the 96-pin Eurocard connectors specified by the VMEbus with the

128-pin SAVA backplane connectors. It must be noted, however, that the selection of the

VMEbus is made for concreteness of presentation; the AFTA design is not irrevocably tied

to this selection. Since the brassboard versioB of the NE is being built with a VMEbus in-

terface, compatibility with military VMEbus systems and SAVA systems is virtually free.

The NE can be used with other bus interfaces (PI-Bus, for example) with the expenditure

of additional design effort.

4.5.2.1. Network Element Overview

A functional block diagram of the NE is depicted in Figure 4-34. The NE is divided

into six major subsections: the VMEbus interface, the NE data paths, the inter-FCR com-

munication system (IFC), the fault-tolerant clock (FTC), the global controller (GC), and

the scoreboard. Most of these sections are tied together by the VDAT bus. This bus is used

to transfer data from the dual-port buffer RAM to the IFC transmitter, from the voter output

to the dual-port buffer RAM, and from the voter output to the scoreboard. The VDAT bus

is also used by the global controller to load initializing parameters into the scoreboard,

fault-tolerant clock, vote mask, and ring buffer manager.
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Figure 4-34. Functional Block Diagram of the AFTA Network Element

4.5.2. I. 1. VMEbus Interface

The VMEbus interface connects the Network Element to the VMEbus in the backplane

of the FCR. The NE is designed so that the VMEbus interface section contains the only
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components that are specific to the VMEbus, The NE can be redesigned for a new type of

backplane bus by simply replacing the VMEbus interface section with an interface to the

new bus.

The interface to the VMEbus is further divided into two subsections. The slave interface

is used to transfer data between the PEs and the NE and for accessing the ring buffer man-

ager. The master interface is used to deliver mailbox interrupts to the PEs.

The slave section includes a dual-port buffer RAM for containing packet data either to

be exchanged by the NE, or to be delivered to a PE. Since the buffer memory is a dual-port

device, both sides may access the device simultaneously as long as they don't both access

the same location. The ring buffer manager prevents such contention by assigning owner-

ship to either the PE or the NE on a buffer cell by buffer cell basis. The PE and NE must be

designed to adhere to the ownership specified by the ring buffer manager; there is no hard-

ware enforcement of the ownership rules.

The master interface delivers mailbox interrupts to PEs. A mailbox interrupt can be de-

livered on either a packet transmission, packet reception, or input buffer full condition. Se-

lection of the interrupt condition is done by modifications to the microcode in the global

controller. Most PEs have mailbox interrupt Capabilities located in the short address space

(A 16) of the VMEbus. If a particular pE for the AFTA does not have mailbox interrupt ca-.....

pabi_ities_ or the capabilities do not meet the requirements expected by the NE mailbox in-

terrupt delivery mechanism, that PE can not take advantage of the mailbox interrupt. How-

ever, it must be noted that the mailbox interrupt capability is optional; a PE can determine

the same information by polling on the ring buffer manager. The purpose of the mailbox

interrupt is to minimize, if possible, the amount of polling required.

4.5.2 .I .2. Network Element Data Paths

The data paths of the NE perform the necessary data exchange patterns to correctly ex-

change, vote, and deliver data in the presence of faults. The data paths consist of a voter,

synchronization FIFOs, controllers for the asynchronous and synchronous portions of the

data paths, and a transmitter/receiver pair for voted resets and monitor interlocks.

The voter handles the resolution of multiple copies of data into a single copy. The voter

has five inputs; however only one, three, or four copies are voted at a time. Voting of one

copy simply involves delivering that copy to the output. The voting of three or four copies
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requires a bitwise vote of each bit in the redundant copies. The voted result will always be

correct if at most one of the inputs is faulty, unless simplex data is voted.

The selection of inputs to the voter is performed by the vote mask. The vote mask con-

tains a number of registers, including the PE mask register, the NE mask register, and the

source mask register. These registers are used in various combinations depending on what

kind of packet exchange primitive is being executed. The loading of the vote mask registers

and mask selection are done by the global controller.

The inputs to the voter come from a bank of five first-in/first-out (FIFO) devices. One

FIFO is associated with each FCR in the system. Reference to a FIFO is made using the

relative addressing mode. The purpose of the FIFOs is to synchronize the data coming into

the NE. The NEs are synchronized to within a predetermined skew; however this skew is

non-zero. Thus, data may arrive from each FCR at slightly different times. The FIFOs are

used to buffer data as it arrives at the NE. The NE uses its internal synchronization refer-

ence, the fault-tolerant clock, to determine when the data is expected to arrive. The data is

not read from the FIFOs until the data is guaranteed to be present (unless faults are pre-

sent.)

The data path controllers shift data into and out of the FIFOs. The asynchronous con-

troller shifts data into the FIFOs for each of the remote NEs, FIFOs CH 1-CH4. The shift-

in signals for the asynchronous FIFOs are derived from the inter-FCR communication

(IFC) system. The synchronous controller shifts data into the FIFO for the local NE, FIFO

CII0 and also shifts data out of all FIFOs. The shift-in signal for the synchronous FIFO,

and the shift-out signals for all FIFOs, are derived from signals emanating from the global

controller (GC).

The final major section of the NE data paths is the voted reset transmitter and receiver.

The voted reset transmitter sends a voted reset command to all other NEs when a voted re-

set primitive is executed by the NEI When the NE receives a voted reset command over the

IFC, the command is delivered to the voted reset receiver. The receiver votes the command

received from each FCR and selects one or more discrete signals to assert based on the

voted result. The discrete signal is asserted for a single FTC cycle following the voting of

the voted reset command. The signal can be used to reset an element within the FCR, or to

assert a monitor interlock. The one cycle assertion is sufficient to reset most elements in an

FCR. If an element requires a longer reset signal, or if the discrete signal is to be asserted

indefinitely, the signal must be latched. The latch circuitry is not a part of the NE.
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4.5,2.1.3. lnter-FCR Communication System

The Network Elements are interconnected by the inter-FCR communication (IFC) sys-

tem. The IFC system includes a transmitter, a fiber-optic network (not shown in Figure 4-

34), and a bank of receivers.

The transmitter section of the NE converts incoming bytes from the NE into a serial bit-

stream. The data is encoded on the bit-stream using a 4B/5B code [AMD89b] to provide

sufficient transitions to ensure proper operation of the clock recovery circuitry on the re-

ceiver. The bit-stream is then converted to an optical signal for transmission over the fiber-

optic network.

The fiber-optic network that interconnects the FCRs within an AFTA cluster provides a

high bandwidth, high isolation interconnection network. Each NE drives a single output

fiber, this fiber goes to a splitter where the optical signal is replicated four times. The four

outputs of the splitter are delivered, one to each NE (all except the original transmitter). The

fiber-optic network contains a splitter for each NE. A diagram of the fiber-optic network is

shown in Figure 4-35.

FCR A

Figure 4-35. Inter-FCR Fiber-Optic Network

The data receivers on the NEs perform the inverse function of the transmitters. First,

the optical signal from the fiber-optic network is converted to an electrical signal. The data

clock is recovered from the serial signal and is used to convert the incoming signal back

into an 8-bit wide data stream. The receiver asserts a signal, based on the data clock, to

signal the asynchronous data path controller that the data on the output of the receiver is

valid.
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4.5.2 .I .4. Fault-Tolerant Clock

The fault-tolerant clock (FTC) circuit is a free-running digital phase-locked loop. The

FTC in each FCR tries to maintain synchronization with the perceived median FTC signal

from the other FCRs. Adjustments are made by adding or deleting a single clock cycle from

the normal F_C period. All adjustments are made during a known adjustment period; the

NE is designed to tolerate one more or one fewer clock cycles during the adjustment pe-

riod.

A signal called a bound is generated for each remote FCR from the IFC receivers. The

four bound signals are voted by a median-edge voter to select the second observed edge.

The voted signal, called median bound, is compared to the local FTC signal delayed by the

expected inter-FCR delay (from empirical measurements). If the local signal is perceived to

be ahead of the median bound, a self-ahead adjustment is made by adding a single clock

cycle to the adjustment period. If the local signal is perceived to be behind the median

bound, a self-behind adjustment is made by deleting a clock cycle from the adjustment pc-

hod.

The Figures 4-36 through 4-38 demonstrate the three types of FTC adjustments. The

rising edge of the median bound is compared to windows relative to the local FTC signal.

If the rising edge occurs within the normal (N) window, no adjustment is made. If the edge

occurs in the self-ahead (A) window, a self-ahead adjustment is made, and if the edge oc-

curs in the self-behind (B) window, a self-behind adjustment is made. The error window

(E) indicates that the local FTC is skewed too much from the median bound to be consid-

ered synchronized with the other FTCs. The rising edge of median bound should never oc-

cur within the error window except during initial synchronization of the FTC signals.

dock

MYFTC

med_n
bound i

E [BINIA[

l, I

E 4 cycle adjustment
period (no adj.)

Figure 4-36. Normal FTC Adjustment Period
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Figure 4-38. Self-Behind FTC Adjustment Period

4.5.2.1.5. Global Controller

The global controller coordinates the functions throughout the Network Element. The

GC asserts signals in almost all other major sections of the NE. The GC is a microcoded

finite-state machine. The GC also has the capability of driving constant data onto the VDAT

bus; this capability is used to load initialization parameters into other sections of the NE.

The microcode store for the GC is built out of registered RAMs with a serial scan-path

for initialization. The microcode is easily changed by creating a new load module which is

transferred to one of the PEs during the booting process. The PE responsible for initializing

the NE transfers the microcode to the GC before proceeding with self-tests or ISYNC.

An embedded system has no need for a flexible microcode store. Indeed, it may be

more desirable from a reliability standpoint to use non-volatile storage. Thus, the GC is

designed so that registered PROMs can be easily substituted for the registered RAMs.

4.5.2.1.6. Scoreboard

The scoreboard is the key element in the AFTA. The scoreboard is responsible for ap-

proving the execution of exchange primitives in a manner consistent with Byzantine re-

silience.
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TheNEsperiodicallyperformapoll of thebuffer statusof eachphysicalprocessorin
theAFTA. The statusincludeswhethertheprocessorhasroom in its input buffersto con-

taina packet(the input buffernot full, or IBNF, condition)andwhetherit hasapacketin
its outputbuffers to beexchanged(theoutputbuffer notempty,or OBNE,condition). If

thelatter is true,theexchangeprimitiveto beexecuted,thedestinationof thepacket,anda

user-definedbytearealsoincluded.

Theaggregateof buffer statuspolls is called thesystemexchangerequestpattern,or

SERP.The SERPsareexchangedsuchthat eachfunctioningNE is guaranteedto havea

SERPcopy thatagreeswith all otherSERPcopies;thus,eachNE makesdecisionsbased
ontheSERPwithconfidencethattheotherNEswill makethesamedecision.

The exchangedSERPis deliveredto the scoreboardfor processing.The scoreboard
usesavirtual groupto physicalprocessormappingto extractthebuffer statusinformation

from the SERPon aVG-by-VG basis.The individual buffer statusbitscontainedin the

SERPfor thevirtual groupmembersarevotedto determinetheoverall statusof theVG. If
all membersof aVG, aunanimity,assertastatusbit, theconditionisconsideredtrue.If a

majority, but not a unanimity,of VG membersasserta statusbit, thecondition is consid-
eredalmosttrue,anda timeoutis started.If thetimeoutexpiresbeforetheremainingmem-

bersassertthestatusbit, theconditionbecomestrue anyway.In anyothersituation,the

conditionis considerednot true.

When the OBNE condition is observedtrue for a VG, that VG becomesa packet

source.The class,destinationVID, anduserbytefields for thesourcearevoted to deter-

mine therequestedpacketexchangeprimitive to beexecutedand thedestinationof the

packet..The voteddestinationVID field is usedto look up thestatusof theIBNF for the
destinationVG. If the IBNF condition is not true, thedestination'sinput buffersarefull,

causingflow control to beasserted.If theIBNF conditionfor thedestinationVG is true,
thedestinationhasroom to receiveat leastonepacket.In the lattercase,the scoreboard

specifiestheNE to executetherequestedexchangeprimitive asdeterminedby theclass
field, anddeliver theresultingpacketto thevirtual groupspecifiedby thedestinationVID

field.Thecontentsof theuserbytearevoted(butnotused)by thescoreboardanddelivered

to thedestination.
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4.5.2.2. Network Element Physical Characteristics

The following table outlines the characteristics of the AFTA brassboard Network Ele-

ment. Since the NE is currently only a conceptual design, these characteristics are estimates

derived from experience and preliminary design parameters.

Weight 1.5 pounds (estimated)

Power 7A@5VDC

Volume Height
Depth
Thickness

9.187 inches
6.299 inches

0.063 inches (board)
0.800 inches (front panel)

Failure rate See Section 9.

Device technology TI'I./CMOS

Operating
Temperature
Range

0 to 55°C at inlet to cooling fans

Storage
Temperature
Range

-40 to +85°C

Relative humidity 5% to 90%, non-condensing

Cooling

Requirements

10 SCFM air flow over nominal operating temperature range

Table 4-4. Characteristics of AFTA Network Element

4.5.2.2. l. Circuit Board Layout

Figure 4-39 shows a preliminary boardlayout_for the AFTA brassboard Network Ele-

ment.
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Figure 4-39. Network Element Brassboard Layout
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4.5.2.2.2. Military Qualification of Baseline Network Element

The AFTA is targeted for application in hostile military embedded environments. Thus,

the availability of the components of the AFTA in military-qualified versions is an impor-

tant factor in the acceptance of the AFTA for such applications. Since the NE is the only

hardware specific to the AFTA, the availability of the individual integrated circuits of the

NE in military-qualified foma is necessary.

Throughout the conceptual design, two major military publications, MIL-STD-883C

and MIL-M-38510, were used as criteria foroo!he qualification level of components for the

AFTA NE. The goal is to ensure that all backplane-independent components (i.e. anything

not in the VMEbus interface subsection of the NE) are available qualified to MIL-STD-

883C, Class B and specified by either a MIL-M-38510 "slash sheet" or on a standard mili-

tary drawing (SMD). Alternatively, equivalent functionality in a similar part is desired.

Table 4-5 summarizes the military availability of devices for the AFTA.

Many of the parts do not have exact equivalents in military-qualified versions. How-

ever, with a few exceptions, the NE functionality can be captured in devices that are very

similar to those used in the brassboard. The reason the brassboard does not use these simi-

lar parts in the first place is due to space, performance, and cost considerations. The fol-

lowing paragraphs summarize the status of the parts which do not have exact military-qual-

ified equivalents.

The status of the scoreboard is indeterminate, since at this time, the design and imple-

mentation of the scoreboard has not been finalized. However, a "Baseline Network Ele-

ment" has been identified which consists of the ND1 devices listed in the Table below and a

single Application-Specific Integrated Circuit (ASIC) which implements the Scoreboard

functionality. It is believed that this level of :integration of the Scoreboard is necessary for

the NE to fit onto a single MIL-STD-344 LRM. Subsequent calculations of AFTA failure

rate, weight, power consumption, and volume wi!l refer to this version of the NE.
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Manufacturer
CSDL
IDT

Signetics
Altera

Lattice'

TI

AIVID _"

part ........

Dallas

Cypress

AT&T

Notes •

scoreboard

7202

6116

7134

72402

7006

39C10

715092
SCB68172
EPM5032

EPM5064

EPM5128

EP910
GAL16V8

GALI8V10
GAL22V 10

GAL26V[2"

ALS245

ALS646
7968

7_k69

1232

7C245A

ODL Xanit

ODL Receive

1 Second source part.

Mil-Std

n/a
8'83B(C?)

883B(C?)

883B(C?)

883B(C?)

883B(C?)

883B(C?)

883B(C?)
n/a

883B(C?)

883B(C?)

883B(C?)

883B(C?)
883C

883C

883C

883C

54ALS

)54ALS

883C

883C

n_
883C

883C

883C

SMD Number

n/a
5962- 8753101 i7201LA30) 3

5962-8866904 (7203S40.) 3

5962-8874002 (6116LA25) 2

5962-8700201 (7132SA-45) 3

5962-8700205 (7132LA-45) 3 .

5962-8684604 (72404L35) 3

5962-8684603 (72404-25)3

n/a
5962-8770803 (39C10C) 4

n/a
5962-8770501

5962-90611 (CY7C344) 1

n/a

5962-89468 (CY7C342) 1

5962-89839032A

n/a
5962-8984103LA

5962-8867001

5962-8872401

5962-8872401

n/a
5962-8403001

(C22V10, Wind.) 1

(C22V 10, Opaq.) 1

(C22VlOL, Opaq.) 1

5962-89956O1
DH27023
DH27025

DH27024
DH27026

(LCC Temp Waiver)

(LCC Voltage W,giver)
(LCC Temp Waiver)

(LCC Volta[eWaiver)
_a
5962-89815
5962-88735

(Wind., pnd. June)

(Opaque)

2 Speed variation or technology variation from specified part.

3 Similar part to specified part.

4 Different or specified revision of part.

Table 4-5. Milit:u'y Device Availability for Network Element

Several devices from IDT are not awfilable in a military-qualified form. Some, such as

the FIFOs and the small dual-port RAMs, have similar devices with less internal memory.

For the FIFOs, this is no problem. For the DPRAMs, more devices can be used in parallel

to provide the same amount of memory. Other devices, including the large dual-port RAMs
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(IDT 7006) and the registered RAMs (IDT 71502), are not available in any similar part.

However, the large DPRAMs are part of the VMEbus-specific section, and the registered

RAMs can be easily replaced with Cypress registered PROMs (CY 7C245A), which are

available in an SMD form. The functionality of the registered PROMs and the registered

RAMs is very similar, as is their timing characteristics. The GC is designed to function

with either of these two forms of control store.

The Altera EPM5064 is not currently available in an SMD form, although it is qualified

to MIL-STD-883B. However, the complete functionality of the EPM5064 can be captured

in an EPM5128, which is available in an SMD form. Since the EPM5128 comes in a larger

package, board space must be sacrificed to accommodate EPM5064 designs in an

EPM5128.

The Lattice 22V10 is a very common PAL architecture and is available in an SMD form

from many vendors, including Lattice. The 18V 10 and 26CV12, variations to the 22V10

architecture, are not available on the SMD list. However, the functionality of an 18V10 can

be implemented in a 22V!0, and the function_dity of a 26CV 12 can be implemented in two

22V10s with the sacrifice of board space.

The AMD 7968 and 7969 devices, the TAXI transmitter/receiver pair, are only available

in a waivered form, either temperature or voltage waivered. While waivered parts are to be

avoided, these are the only devices that perform the necessary function.

The Dallas device is not available in a military-qualified form. However, this is not a

problem since the function of the Dallas dey_ce, a watchdog timer, is not essential to the

AFTA functionality. If the functionality of a watchdog device is desired (which it probably

is, for common-mode fault recovery), the same functionality can be implemented using

several discrete components with the sacrifice of board space.

The AT&T devices are the fiber optic data links that convert between electrical and opti-

cal signals. Since they are hybrid devices, they are not covered by the SMD list. However,

surface-mount versions of the device, qualified to MIL-STD-883C, have been announced

by AT&T [APS90].
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Effect of implementation Technology on Network Element Physical Character-

isacs

The technology used to implement the NE determines its performance, power con-

sumption, weight, volume, and failure rate. The Baseline design outlined above uses one

ASIC to implement the Scoreboard functionality. Because of the cost involved in fabricat-

ing an ASIC, two additional implementation options for the Scoreboard have been consid-

ered for the NE. The first relates to the implementation of the Scoreboard function using a

high speed Reduced instruction Set Conlputer (RISC) processor and the second relates to

the Scoreboard implementation using a number of Field Programmable Gate Arrays

(FPGAs). For the reasons listed below, neither of these implementation options appears

sufficiently attractive to warrant their continued development.

4.5.2.3. I. RISC Processor Scoreboard

Presented below is a listing of the pin counts, total gates, and power consumption of a

the AFTA Network Element Scoreboard implemented as an AMD29000 processor. This in-

formation is intended for comparison purposes only, not as any recommendation for this

course of action. Bctow is also a paragraph explaining some of the penalties associated

with this approach.

The main drawback to this approach is the massive performance penalty. The code

which gets executed most often is the voting code. Using optimized assembly language,

this code comes out to 99 instructiot_s. This section is executed at least once for every VG

in the system. Assuming an all triplex configuration (13 VGs) this means 99 total instruc-

tions. Using a 40MHz processor (25ns per instruction), the scoreboard emulator will take

99 ItS just to vote the OBNE bits of the VGs. When the overhead of performing timeouts

and voting the rernainder of the SERP intk)rmation is added, the scoreboard emulator will

be to slow to support real-time tasks with iteration rates of 100Hz. Thus, this method will

not meet the perfom_ance requirenaents of the AFTA.

The total gate count provided is intended to convey the number of transistors present

rather than a size estimate. For this purpose the RAM counts are doubled. This is due to the

fact that two 'gates' are used for each RAM cell. A gate is defined as four transistors (two

N-channel and two P-channel).

Page 4-60



ScoreBoard Emulatgr

AMD29000 RISC Processor

Power Consumption (Watts)
Pin Count

Dual Port RAM (Sdt 7134 or equivalent) [4K x 81
Power Consumption (Watts)
Pin Count
Gate Count

Processor RAM (Sdt 7186 or equivalent) 2x[4K x 16]
Power Consumption (Watts)
Pin Count
Gate Count

Miscellaneous Glue Logic (Altera 5064 or equivalent)
Power Consumption (Watts)
Pin Count
Gate Count

Functional Scoreboard Emulator totals

Power Consumption (Watts)
Pin Count
Gate Count

-4.125
169

1.5
48

70K

1.5
88

262K

1.5
44

5K

8.625
349

337K + Processor complexity

4.5.2.3.2. FPGA Implementation

Presented below is a listing of the pin counts, total gates, and power consumption of an

AFTA Network Element Scoreboard implemented in FPGAs. This information is intended

for comparison purposes only, not as any recommendation for this course of action. Below

is also a paragraph explaining some of the penalties associated with this approach.

There are three major reasons for not taking this approach. The first is the complexity.

A student at CSDL recently completed two FPGA designs for his thesis, one of which was

a voter. The voter consumed an entire FPGA by itself, and the scoreboard contains a voter

plus other custom hardware. The second reason is that the existing VHDL models would

be invalid for the new design. Some companies have promised VHDL support for their

FPGA design systems, such a capability is at least a year and a half away. With all the ef-

fort put into the VHDL modeling, it would be wasteful to throw it all away. Closely cou-

pled to this is the third reason, verification. With the VHDL model the verification occurs

with the transformation to the gate level. Each new step could be verified before continu-

ing. With the FPGA approach, each FPGA would be a segment of the scoreboard algo-

rithm, causing problems with verifying it individually.
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Thetotal gatecountprovidedis intendedto conveythenumberof transistorspresent

ratherthanasizeestimate.ForthispurposetheRAM countsaredoubled.This is dueto the

fact thattwo 'gates'areusedfor eachRAM cell. A gateis definedasfour transistors(two
N-channeland two P-channel).

ScoreBoard Emulator (FPGA)

2 Dual Port RAMs ddt 7134 or equivalent) [4K x 81

Power Consumption (Watts) 3.0
Pin Count 96
Gate Count 140K

4 Altera 5128 FPGAs

Power Consumption (Watts) 5.0
Pin Count 272
Gate Count 32K

Functional Scoreboard Emulator totals

Power Consumption (Watts)
Pin Count
Gate Count

8.0
368

172K

4.5.2.3.3. High End Network Element

A third implementation study performed under the Conceptual Study relates to the ag-

gressive use of VHSIC/VLSI packaging to construct the Scoreboard, Global Controller,

Voter, and VMEbus Controller in four ASICs. This design is denoted the "High End Net-

work Element."

Presented below is a listing of the pin counts, total gates, and power consumption of an

AFTA Network Element consisting of four ASICs and 16K x 32bits of DPRAM. The

DPRAM was not included into the ASIC design since it was so large.

Each ASIC is shown below followed by its clock speed. Shown below the name are

the parts which were used to estimate the gate counts. When there is a number in square

brackets, [], it indicates a part which would have been used had the ASIC approach not

been taken. Following this number is a calculation showing how the equivalent number of

gates was arrived at. For example, the FTC section of the Voter ASIC contains the follow-

ing : FTC [5128] (256x48x0.8). This means that the FTC would have been implemented in

an Altera 5128, containing 256 internal Macro cells. Each Macro cell is estimated to contain

48 gates of functionality and the chip is considered to be at 80% utilization. Thus 9.8K
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gatesis reached.Any multiplier beforethechip typeis thenumberwhichwouldhavebeen
used.For RAM theinformationis thenumberof chipsused,theirdepth,andtheirwidth.

Thetotal gatecountprovidedin the sumn)ary is intended to convey the number of tran-

sistors present rather than a size estimate. For this purpose the RAM count was doubled

and added to the logic count. This is due to the fact that two 'gates' are used for each RAM

cell. A gate is defined as four transistors (two N and two P-channel). For a size estimate,

the RAM cells take about 43 percent of the space required for the logic cells, so the original

RAM count should be multiplied by 0.43 and added to the logic count to receive a total

'soft gates' equivalent. Since the voter has minimal RAM requirements it may be imple-

mented in an LSI LCA package without using separately diffused RAM.

Any errors in the data below should be on the conservative side. All calculations pre-

sented were done in the most conservative ma0ner possible. One assumption made was that

25% of the gates could be active on any clock edge. LSI has stated that typically only 15-

20% will be active. Another was the total nun3ber of gates used for RAM has been included

in the gate count. Most likely the RAM usage will come from the raw gate count due to its

being diffused into the silicon directly and not being implemented in the 'soft gates' the

logic will use. It will therefore take less space than the 'soft gates' and not impact as much

of theuseable area on the die.
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_,_..QLedl.9.I£_ (25Mhz) _ RAM

Random Logic 50K
RAM 40K

Totals 50K 40K

Logic Gate Power consun_plion • (25 % x 5.5 p.W/gate/MHz)

0.25 x 5.5 x 10-6 x 50K x 25 = 1.719 Watts

Pin Count
Data (4x32) 128
Address I0
Control 7

Total !45

Pin Pow.er ¢onsunlption : (25 I.IW/pin/Mttz/pF)

25 x 10 -6 x 145 x 25 x 5 = 0.453 Watts

Summary:
Pin Count : 145

Tom! Gates : ! 30,000
Total Power (Watts): 2.172
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Global Controller (12.5Mhz) RAM

Controller 2K

Mist Logic (Mux, etc.) 0.5K
Control Store 328K

Totals 2.5K 328K

Logic Gate Power consumptiow! : (25 % x 5.5 _tW/gate/MHz)

0.25 x 5.5 x 10 -6 x 0.5K x 25 = .05 Watts + .5 Watts = .55 Watts

Pin Count
Control 80

Pin Power consumption : (25 I.tW/pin/Mtlz/pF)

25 x 10 -6 x 80 x 25 x 5 = 0. t25 Watts

S_,mlm_u'y :
Pin Count : 80
Total Gates : 657,860

"lbtal Power (Watts): 0.675
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voter (12.5Mhz)

FIFOs (5x64x32)
Debug Router (4x32x2:1 )
VDAT FIFO (64x32)
Voter [51281 (256x48x0.8)
FTC [51281 (256x48x0.8)
VReset REC 150641 (128x48x0.8)
VReset XMIT 150321 (64x48x0.8)

lsync Proc. [50321 (64x48x0.8)

Totals

RAM

0.5K 10K
0.3K
0.1K 2K
9.8K
9.8K
4.9K
2.5K
2.5K

30,4K 12K

la)gi¢ Gate Power consumption • (25 % x 5.5 gW/gate/MHz)

0.25 x 5.5 x 10 -6 x 30.4K x 25 = 0.142 Watts

Pin Count
Data (5x32) 160
FTC 5
DS 5
Clock !
Buffer Cntl. 6
M/I 16

Total 193

Pin Power con_ml_ : (25 p.tW/pin/MHz/pF)

25 x 10 -6 x 193 x 25 x 5 = 0.302 Watts

S_m_nm1y :
Pin Count : 193
Total Gates : 54,976

Total Power (Watts): 1.37
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VME Controller (25Mhz) _ RAM

VME Buffer 4x[245] 0.4K
VME Addr. Buffer 2x[646] 1.0K

VME DS gen [26V12] 0.8K
VME Ctlr. [5064] (128x48x0.8) 4.9 K
VME Addr. Decode [22V 10] 0.5 K
DPRAM Addr. Reg. [5064] 4.9K
INT FIFO (64x5) 1.5K
INT Ctl. PROM 3x[7C245] (2048 x 8) 0.1 K
RBM [5128] (256x48x0.8) 9.8K
RBM RAM [6116] (2048x8) 16.4K

Totals 23.9K 65.9K

0.3K
49K

Dual

Logic Gate Power consumption • (25% x 5.5 l.tW/gate/MHz)

0.25 x 5.5 x 10 .6 x 23.9K x 25 = 0.821 Watts

Pin Count

Data (2x32) 64
Address 46
INT & Control 21

Tot,'d 131

Pin Power consumotion ' (25 I.tW/pin/M Hz/pF)

25 x 10-6 x 131 x 25 x 5 =0.205 Watts

Summary "
Pin Count • 13 i

Total Gates ' 155,619
Total Power (Watts): 1.026

Port RAM

VME DPRAM (idt 7(X)6 or equivalent) 4x116K x 81

S umm_,lry :
Pin Count : 272

Total Gates : 1,048,576
Total Power (Watts): 2.5

4.5.3. Input/Ot.!tput Controller (IOC) Char____!_;leristigs

A host of mission-specific input and output devices are connected to the AFTA by in-

put/output controllers (IOCs). An IOC is an LRM that contains one or more I/O devices.

Examples of IOCs include interfaces to IMUs, GPS receivers, CNI gear, displays, status
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panels,AHARS, air data sensors, altitude, image, range, Doppler navigation, engine sen-

sors and controls, switches and annunciators, and data buses such as MIL-STD-1553.

A number of IOC types may reside in the AFTA; an IOC plugs into the FCR backplane.

PlUs communicate with the IOCs either over the FCR b:tckplane bus or over a dedicated I/O

busl the advantage of the latter approach is that the 1/O traffic does not interfere with the in-

ter-V,G traffic between the PEs and the NEs, which goes over the FCR backplane bus. The

exact definition of the I/O suite is mission-specific. The AFTA architecture is designed to

admit any IOC that is compatible with the selected backplane bus. The IOC may simply be

a device-specific memory-mapped controller, or it may be an interface to a dedicated gO

network.

"Dumb" IOCs are controlled by a PE (either a simplex VG or one member of a redun-

dant VG) and never communicate directly with the NE. "Smart" IOCs, for all intents and

purposes, act like PEs and may be grouped into redundant VGs; dumb IOCs can not.

The following I/O devices are candidates for implementation in the AFFA; this list will

be refined as det;tiled data regarding the mission's requisite I/O suite become available.

Instrumentation btlses: MIL-STD- 1553/1773 (SA VA 1553M)

LANs: FDDI, SAFENET I1, Ethernet

Memory-mapped I/(3: A/D, D/A, discretes, SAVA ADM

Expansion memory: non-volatile RAM, EEPROM

Mass memory: disk, tape, CD-ROM, SAVA MM

Fault Tolerant Dat:t t3tJs/Authenticatioxl Module

4_,5,4_. Power Conditioner (PC) Ch_u'_tcteristics

The power conditioners (PCs) supply the power required by the AFTA. At least one

PC is used for each AFTA FCR; to eliminate single-point failures, a PC can not be allowed

to drive more tha_'_ one FCR. The PCs not o,lly regulate and filter the power delivered to an

AFTA FCR, they also maintz_in uninterrupted AFTA operation in the presence of momen-

tary dropouts on the m:_in vehicle power buses. A simplified architecture of a PC is shown

iq Figure 4-40.

A PC provides reg_lated power co_wersi()_ from tl_e main vehicle direct-current (DC)

power buses, labeled "A" and "B" in Figure 4-40, to the voltage level(s) necessary to

power the AFTA LRMs. One or more sense signals are fed back from designated points in
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theFCRto allowclosed-loopfeedbackof theregul:ltedpowerasFCRloadvaries.ThePC

maycontainmultiple regulatorsfor variousvoltagelevelsor to powerisolatedsectionsof

theFCR. OptionalPCcapabilities,not shownin Figure4-40, includeselectiveactivation
anddeactivationof aPCandremotemonitorhlgof thePCoutputvoltageandcurrent.

To toleratethe indefinitelossof eitherof thetwo mainvehiclebuses,eachPCis con-

nectedto bothmainbuses.DiodesCR1and_CR2preventcurrentfrom flowing from anop-

erationalto an inactivemain bus. The PCis designedto provide full ratedpowerto the

FCR usingonly one bus;thustheAFTA call beusedin vehicleswhich possessonly one

main powerbus. The PCmustalso toleratethetemporaryoutage of both buses, such as

during the switch-over from helicopter APU to engine generators, during which a 0.5s

power dropout occurs on both vehicle buses. This function is provided by a battery in each

PC which must be sized to provide full FCR power for the duration of any anticipated out-

age of both vehicle main buses. The PC must also protect itself and its FCR from over-

voltages on the main buses; this protection is provided by the units labeled OV1 and OV2 in

the figure. Metal-oxide varistors (MOVs) are included in the OVI and OV2 circuitry to

handle high-frequency high-voltage input sPikes which are too fast for conventional input

overvoltage protection circuitry. Finally, fuses (or circuit breakers), labeled F1 and F2 in

Figure 4-40, limit input current from either main vehicle bus. These fuses must be sized to

permit power-on current surges in excess of t!_e expected steady-state power dissipation.

A

B

OVl(,

T
CRI

Main Vehicle Power Buses

Power
Monitor

Voltage' Regulator

T Battery

Power-Fail

Interrupt

Sense

CR3 F3

Ground

FCR Power

Figure 4-40. Functional Blcx:k Diagram of the AFTA Power Conditioner
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TheFCRis protectedfrom excessivelyhighPCoutputvoltageandhigh-voltagehigh-

frequencyspikesby theoutputovervoltageprotectorlabeledOV3; this circuitry alsopro-

tectsthePCandmainvehiclebusesfrom back-propagatedovervoltagesandspikesemanat-

ing from the FCR. Diode CR3 preventsbackcurrentsgeneratedwithin the FCR from

flowing into thePCandpossiblyonto thevehiclemainbuses.Thefuse(orcircuit breaker)

F3 providescurrent-limitingprotectionfor theFCR.This fusemustbedesignedto permit

theexpectedpower-oncurrentsurge.

If anoutput undervoltage condition persists lk)r a time interval which exceeds the bat-

tery's amp-hour rating, or if the voltage regulator itself fails, the PC's power monitor as-

serts a power-fail interrupt to the FCR to allow the FCR to attempt emergency power-down

functions before the PC output drops below a minimal level. Since the AFTA is Byzantine

resilient, the sudden loss of any single FCR to an undervoltage condition or PC failure is

tolerated; however, the power fail interrupt provides a mechanism for a more graceful

degradation of the AFTA system.

4.5.5. Cooling System

All AFTA components utilize a thermal management layer for conductive cooling from

the LRM interior to the LRM edge. The edges of each LRM are thermally connected to the

LRU side walls using wedge locks. The LRU side walls are in thermal contact with the

LRU cold plate, which transfers heat away fi'om the LRU. Depending on the installation,

the LRU cold plate may be cooled by ambient air, forced air, or forced liquid.
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5. AFTA Software Architecture

5.1. Overview

The AFTA is designed to provide a highly reliable parallel processing system. Pro-

eessing is distributed among the parallel processing sites by task, and intertask communi-

cation is provided by message passing. High reliability is provided by redundantly execut-

ing the tasks on replicated processors. The AFTA hardware and software have been de-

signed to hide the hardware redundancy, hardware faults, and the parallel processing de-

tails from the applications programmer. The functional structure of the system software is

shown in Figure 5-1. Each VG in the system executes the rate group tasking paradigm

which provides the execution environment for application and system service tasks. FDIR

is a system service which provides fault detection, isolation, and reconfiguration. The I/O

services provide the interface to input/output devices.

r

Rate Group Tasking Paradigm

, J

Figure 5-1. AFTA System Software Organization

A desired initial system configuration must be specified prior to beginning system op-

eration. The configuration must specify the mapping between tasks and VGs and that be-

tween VGs and processors. This mapping is maintained by the operating system and is

used to isolate the applications programmer from the underlying redundancy and parallel

processing mapping. System initialization uses the above mapping to test and ready the

hardware components of the system and evaluate whether there are sufficient resources to

perform the mission. System initialization must also ready the software components for

execution. The system specification and an overview of system initialization is described in

Section 5.2.
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The rategroup tasking paradigm provides the framework for executing system and

application tasks in the AFTA. It is composed of the rate group tasking services, the time

management services, and the communication services. The rate group tasking services

define the tasking framework for the application and system service tasks and are described

in Section 5.3. The time management services are used to generate the rate group frame

boundaries and provide periodic resynchronization of the VG. They are described in Sec-

tion 5.4. The communication services are used for intertask communication and are de-

scribed in Section 5.5.

FDIR provides fault detection, isolation, and reconfiguration of Processing Elements in

the system. It is composed of local FDIR which executes on each VG and system FDIR

which executes on a specially designated VG. Local FDIR has the responsibility for detect-

ing and isolating hardware faults in the processor elements of its VG and disabling their

outputs using the interlock hardware. In addition, local FDIR reports all link and Network

Element (FIE) faults to system FDIR and responds to its reconfiguration commands. It is

also responsible for transient PE hardware fault detection and for running low priority PE

self tests to detect latent PE faults. It is transparent, autonomous and non-intrusive to the

application. The system fault detection, isolation and reconfiguration is responsible for the

collection of status from the local FDIR and detection, isolation and masking of Network

Element faults, and link faults. It resolves conflicting local fault isolation decisions, iso-

lates unresolved faults, correlates transient faults, and handles VG failures. Local and

system FDIR are both described in Section 5.6.

The I/O services provide efficient and reliable communication between the application

program and external devices (sensors and actuators). They execute on any VG which is

responsible for I/O and provide source congruency on all input data and voting of all output

data. The I/O services provide the user with the ability to group I/O transactions into chains

and I/O requests. It also provides the user the flexibility of scheduling both preemptive and

non-preemptive I/O. The I/O services are described in Section 5.7.

5.2. System Specification and Initialization

The AFTA is composed of a set of processing and Network Elements. During system

initialization these components are individually initialized and tested. Non-faulty compo-

nents are then grouped into redundant units which can provide fault tolerant operation. The

Processing Elements are grouped into a set of virtual groups or VGs and the network ele-

ments are grouped into the Network Element aggregate. These units are then initialized and

tested. System initialization is completed by distributing the application load among the

available VGs and beginning cooperative execution of the assigned tasks.



The initialization is based on a VG configuration table and a task configuration table.

The VG configuration table maps VGs to Processing Elements. The task configuration

table maps rate group tasks to VGs. An initial configuration must be specified for both ta-

bles and compiled into the AFTA operating system. The VG configuration table and asso-

ciated initialization are discussed in Section 5.2.1. The task configuration table and asso-

ciated initialization are discussed in Section 5.2.2. Detailed descriptions of the initialization

procedures are discussed in their associated sections.

5.2.1. Virtual Group Configuration

The Network Elements provide message passing between VGs. To provide the com-

munication, the Network Elements must. map each VG to its corresponding set of

Processing Elements. This mapping is maintained in the Network Element's VG configu-

ration table. The VGs also maintain a copy of the configuration table to alter the VG to

processing element mapping when operational requirements or resource availability

changes. The processing element is specified by its hosting Network Element and the

Network Element port it is using for communication. During initialization, the processors

contend for the available communication ports and the above mapping does not provide a

unique external physical identification of the corresponding processor hardware. The

physical identifier of each processor in a VG is maintained in the software version of the

table for identification of faulty elements. An example AFTA configuration showing the in-

formation used in the configuration table is shown in Figure 5-2.

NV. A "A-

! port 0

port
port 2

port 3 i

i port 4

port 5

port 6

port 7

u

" E"
u

m

VG

"e
"0
"0

Figure 5-2. Example AFTA Configuration
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The examplesystemhasfive Network Elements with each Network Element having

eight communication ports and hosting eight Processing Elements. VG 1 is a quadruplex

composed of Processing Elements (B,6), (C,4), (D,3), and (E,5) where the the first ele-

ment of the pair is the Processing Element's Network Element id and the second element is

its port id. This is the information required by the Network Elements for delivery of the

communication service. The OS also maintains the physical identifier of each processor in

the VG to externally identify faulty hardware. The corresponding physical identifiers of the

processors in VG 1 are (B,S4), (C,$6), (D,S3), and (E,S2) where the the first element of

the pair is the Processing Element's Network Element id and the second element is an ex-

ternally visible identifier unique among the processors hosted by that Network Element.

An initial VG configuration must be specified for the system. It must be compiled into

the operating system and loaded into the Network Elements. Both the NE and OS versions

of the configuration specify each VG's redundancy level, its Processing Elements, a fault

mask, and a communication timeout value. The processor class of the VG, its rate group

phasing, and the physical identifier of each of its members is also included in the OS con-

figuration. The processor class field is used to identify the ports associated with each pro-

cessor class and limit the contention for these ports to processors of the appropriate class

during initialization. This prevents different processor types from becoming members of

the same VG. The ."ate group phasing specifies the relative phase of the VG's rate group

frames to the frames on other VGs. The physical identifier of each Processing Element is

the only field which is not specified in the initial configuration. It is determined after the

Processing Elements has successfully contended for a communication port and are a mem-

ber of the VG mapped to that port.

The rate group phasing describes the relationship between the rate group frames on

each VG in the system. Within the task configuration table described in the next section,

each task is assigned to execute in some rate group. The rate group determines the fre-

quency at which the task will be executed and the resulting rate group frame delimits the

execution cycle of the task. Tasks assigned to the same rate group will execute at the same

frequency regardless of their hosting VG, but there may be a time difference between the

start of their first and each subsequent rate group frame if the tasks are executing on differ-

ent VGs. This phasing would be caused by the completion of system initialization at dif-

ferent times on different VGs. An example phasing of the frames for tasks in a given rate

group on multiple VGs is shown in Figure 5-3.
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VGI vG2 .... VG3 VG4 base time
_u_u_!_jlu_p_n_l_|_u_u_m_m_l_iI_m_u_J_!_i_p_i!_iu_iH_

.......... .... pha_e ,,',,'..".,.,,'.,

r_,,,

Figure 5-3. Rate Group Frame Phasing

In the example, the first rate group frame on VG 1 starts at the base time and the f'trst

rate group frames on the th¢ remaining VGs are delayed. The interval betweerl _e base

time and the start of the firsI rate group frame is the VG's phase delay. The phase delay ts

important because it deterrnlnes the relationship between the frame in which mes sage_ arc

sent and the frame in which they are received. This is also affec!ed by the message passing

restrictions in the rate group tasking paradigm. In the paradigm, a task's queued messages

are only sent and its received messages are only made available at its corresponding rate

group frame boundary. This Is indicated in the figure by the arrows at the frame botmd-

aries. An example from the figure is the messages transmitted after the f'a'st frame on VG!.

They will be received at the slart of the first frame on VG2 and VG4, but will holt be re-

ceived until the start of the sec0rtd frame on VG3. This relationship of sending frame to re-

ceiving frame will remain c0nstgnt for subsequent frames if the phastng does not change.

The phasing will change if the start of subsequent rate group frames on different V Gs

are allowed to float with respect to each other. The time management service !ms been de-

signed to minimize this float by locking the phase to the system time maintained by the

Network Element. There still remains inherent float because of the variability of the in.ter-

val from the start of the frame _o when any given message will be sent or read, This float is

increased when VGs which shal'e a Network Element have the same phase del_y or [heir

delays differ by an integer number of minor frames. This is because the VGs are then

forced to compete for access [o the Netwo_ Element to send and read their messages at
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their frame boundary. For this reason the simplest phasing of a zero phase delay for all

VGs is not recommended. The phase field in the VG configuration table is provided to

specify the desired phase delay for each VG. The declaration of the OS version of the con-

figuration table and its associated data types are shown in Figure 5-4.

type redundancy_level_type is 0..4;

type processor_class_type is (sbc,intelligent_io);

type minor_frame..period_unit is delta 0.01 range 0.00 .. 8.00;

subtype ne_id type is (A..E) of message_exchange_type;

type port id type is (0..7);

type processor id record is record

ne_id "ne id type;

portid • portid_type ;

board id • integer;

end record;

type vg_configuration_record is record

redundancy : redundancy_level_type;

class : processor_class_type;

phase : minor.frame_.period_unit;

id : array (natural range l..redundancy_level_type'last) of

processor_id__record;

mask : mask_type;

timeout : timeout_type;

end record;

type vg_id_type is range 0..63;

vg_configuration "array (vg_id_type) of vg configuration_record;

Figure 5-4. VG Configuration Table

vg_id_type defines the allowed set of VG ids and the configuration table has an entry

for each VG id. redundancy specifies the redundancy of the VG. Zero indicates there are

no members in the VG. One, three, and four indicate a simplex, triplex, and quadruplex

respectively. Duplexes and quints are not supported, class is the processor class of the

VG and corresponds to a type of single board computer or intelligent io device, phase is

phase of the rate group frames on the VG with respect to the frames of other VGs in the

system. It is specified in minor frame period units and the maximum phase is one major

frame, id defines the Network Element and port assignment of each member. It also con-
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rains each member's board id for physical identification of the corresponding processor.

The board id is determined during initialization based on the results of the port contention

process, mask and timeout specify the fault mask and communication timeout for the VG.

The information in the VG configuration table is sufficient to complete the first phases

of system initialization. These phases are processor initialization, Ada elaboration, port

contention, FCR initialization, and Network Element synchronization. Processor initializa-

tion is performed by each processor at power up to initialize the local hardware devices and

perform self tests. The test results are written tO an assigned area of mass memory. Pro-

cessors which deem themselves healthy perform Ada elaboration and begin execution of the

main task. The remaining processors attempt to remain passive throughout the remainder

of the mission. Within main each processor determines its processor class and its hosting

Network Element. It then evaluates the configuration table to determines the network ele-

ment ports assigned to processors of its class on this Network Element. All the processors

in each class then contend for the assigned ports in ascending order. Based on the acquired

port and the hosting Network Element, each process can determine its VG id from the con-

figuration table.

Port 0 on each Network Element is a specially designated port. The processors which

acquire these ports are responsible for testing and initializing the shared components of

their FCR and any dumb components within their FCR. These test results are also written

to mass memory. When the testing is complete, these processors direct the network ele-

ments to attempt initial synchronization. A Network Element can also be programmed to

spontaneously attempt synchronization. This is useful if the NE does not host any proces-

sors. The processors which did not acquire port 0 remain passive waiting for directives

from the system manager VG. When synchronization is successful, the Network Elements

start system time keeping and are capable of providing inter-VG communication.

5.2.2. Rate Group T_sk Configuration

The remainder of system initialization requires the use of the task configuration table.

The task configuration table maps tasks to VGs and specifies the task's rate group assign-

ment and message buffering requirements, Each task is assigned a communication id or

CID and has a corresponding entry in the task configuration table. The CID is used as the

task's logical address for intertask communication. An initial configuration must be speci-

fied for each task in the system and compiled into the OS. The structure of the task config-

uration table is shown in Figure 5-5.
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type location_type is (no_vg, one_vg, all_vg);

type rg_type is (RGlu_G2,RG3,RG4);

type precedence_type is range 0..15;

type task_configuration_record is

location • location_type;

vg_id " vg_id_type ;

rg "rg_type;

precedence • precedence_type;

task_id " task__id_type ;
max xmit size "natural;

max xmit num• natural;

max rcve size'natural;

max rcve num " natural;

end record;

type communication id__type is ( rg_dispatcher,

fdi,
system.f di,

m,,

appll

app 12);

task_configuration : array (communication id type) of

task_configuration_record;

Figure 5-5. Task Configuration Table

rg_dispatcher, fdi, system_fdi, appll, and appl2 are tasks in the system and each task

has an associated configuration record, location is used to define whether the associated

task is not executing, executing on one VG, or executing on all VGs. If the task is not exe-

cuting, then the remaining fields are invalid. If the task is executing on only one VG, then

vg_id defines which VG. rg defines in which rate group the task is executing, precedence

is the task's precedence among the tasks executing in the same rate group on the same vir-

tual group. It is used to determine their execution order within the rate group frame. The

highest precedence corresponds to 15. task_id is the VG's local identifier for the task.

Unlike the communication ids, the task ids are not guaranteed to be unique throughout the

system. The maximum number and maximum size of messages that the task will have

queued for transmission is indicated in max_xmitnum and max_xmit_size. Their rcve_

counterparts are used for messages that it will have queued waiting to be read.
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An initialization must be specified for each entry in the table within the enclosing pack-

age body. A partial initialization of the a_ye example is shown in Figure 5-6. In this ex-

ample the rate group dispatcher has been installed to execute on all VGs as an RG4 task

with the highest precedence and an application rate group tasks has been installed to execute

on VG 4 has an RG3 task with high precedence. It is important that the rate group dis-

patcher is the first element in the communication id type, executes as an RG4 task, and

has the highest precedence. This guarantees that it will execute at the beginning of each

minor frame and be able to dispatch the other rate group tasks.

task_configuration(rg_dispatcher) := (

location = > all_vg,

rg => RG4,

precedence := precedence_type'last,

task_id => rg_dispatcher_id,
max xmit size := 40,

max xmit num := 10,
m

max rcve size := 40,
m

max_rcve_num := 10);

task_configuration(appll ) (

location = > one_vg,

vg_id => 4,

rg = > RG3 ,

precedence 12,

task_id = > appll_id,

max xmit size := 50,

max-xmi["nUm := 5,

max rcve size := 10,

max rcve num := 2);

Figure 5-6. Task Configuration Table Initialization

The VG which is hosting system_fdi is designated the system manager and is respon-

sible for the directing the remaining phases of system initialization. These phases are sys-

tem manager alignment, resource evaluation and reconfiguration, VG initialization, and

system start. System manager alignment is performed by the system manager to align the

memory and devices of its members. The System manager then performs resource evalua-

tion by testing the Network Elements and _lling each VG in the system for its members'

test results and physical identifiers. The physical identifiers are recorded in the VG config-

uration table and the test results are analyzed to determine which VGs have faulty members.
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Reconfiguration is performed if there are unutilized simplex VGs which can be used to re-

place the faulty members. If there are sufficient resources after reconfiguration to meet the

mission requirements then the system manager begins VG initialization.

VG initialization consists of aligning the memory and devices of each VG and initializ-

ing their rate group tasking services, communication services, and time management ser-

vices. The system manager directs each VG to perform the above initialization and waits

for continuation that the initialization was completed. Rate group tasking initialization uses

the task configuration table to determine the locally executing tasks and installs them into

the local rate group tasking suite. The communication services initialization allocates the

packet queues required by the local tasks and enables message based communication. Time

management initialization starts rate group tasking with the phase specified in the VG con-

figuration table when the directive to start operational execution is received from the system

manager. This directive is a broadcast to all VGs and its timestamp defines the reference

time for the rate group phasing. System initialization is completed when each VG receives

the directives and begins rate group tasking.

5.3. Rate Group Tasking Services

Within a VG of the AFTA, multiple tasks require the use of the message passing re-

source. These ir,_.lude both application tasks and timer based preemptive Ada Run Time

System (RTS) services. In order to maintain congruent use of this resource across the

members of a VG, it is necessary to ensure there is no competition for its use. This is done

by limiting the preemption allowed in the system and by limiting the use of the message

passing resource. A rate group tasking paradigm was developed to fulfil these require-

merits for the AFTA. The paradigm consists of the AZFA rate group tasking services, the

AFTA time management services, and the AFTA communication services.

Within the rate group tasking services, tasks are assigned to execute as either RG1,

RG2, RG3, or RG4 tasks and a rate group dispatcher is provided to control their execu-

tion. The tasks in each rate group must be cyclic and execute one complete iteration within

their rate group frame. The time management services only allow task preemption at the

fastest rate group's frame boundaries. At these boundaries, the rate group dispatcher pre-

empts the executing task and starts the execution of tasks in faster rate groups. The com-

munication services are provided to prevent preemptible tasks from using the message

passing resource directly. Instead, their messages are buffered on queues controlled by the

rate group dispatcher. This removes the possibility of contention for the message passing

resource.

The rate group tasking initialization and associated interaction with the time manage-
ment and communication service initialization are described in Section 5.3.1. The rate
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group dispatcher is described in Section 5.3.2 and the structure of rate group tasks is de-

scribed in Section 5.3.3. The time management services will be described in Section 5.4

and the communication services will be de, bed in Section 5.5.

5.3.1. Rate Group Tasking lniti;_lization

Every task installed in the task configuration table must be present on each VG and will

start execution during elaboration. The tasks must suspend themselves until processor and

Network Element initialization are completed and the local VG id has been determined.

Based upon the VG id, a list of the tasks executing locally is created and these tasks are

scheduled for execution. The tasks not ex_uting locally will not be scheduled and will re-

main suspended throughout the mission. After the indicated tasks are scheduled, the com-

munication services and time management services are initialized. When the initialization is

complete, the rate group dispatcher will begin execution of the first rate group frame and

trigger the execution of the appropriate rategroup tasks.

The list of tasks executing locally is created from the task configuration table and is

maintained as a separate linked list of the tasks in each rate group. The head of each list is

stored in the rg_task_lists structure, rgtask_lists is used during initialization to set up the

scheduling parameters for the tasks and to allocate packet buffers for the locally executing

tasks. After initialization, it is used is at each rate group frame boundary by the rate group

dispatcher to check the overrun status of the tasks and by the communication services to

transmit their messages and to update their frame markers. The declaration of the rate

group task lists is shown in Figure 5-7.

type rg_task_record ;
type access_rg_task record is access rg_task_record;

type rg_task_record is record
task id " task_id_type;
cid -communication id type;

next task " access_rg_task_record;
end re_rd;

type rg_task_listarray is array (rg_type) of access_rg_task_record;
rg_task_lists • rg_task_listarray ;

Figure 5-7. Rate Group Task Lists

task id is the local run time system identifier for the task. It is used for scheduling and

checking the execution status of the tasks in each list. cid is the communication id for the
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taskandis usedto allocatethetask'spacketbuffersandmaintainits queues,nexttask is a

pointer to the next entry in the list. next_task is null in the last list entry of each rate group.

The init_rate_group_tasking procedure creates the rate group task lists and sets the

scheduling parameters for the rate group tasks. It is called by the main task after the local

VG id has been determined. The order in which tasks are placed in the lists determines

their execution order within the rate group frame. The precedence field in the task configu-

ration entry is used to determine this order. Tasks with higher precedence will execute be-

fore tasks with lower precedence. If tasks have equal precedence, then the task first de-

elated in the communication_id_type will execute first. The init_rate_group_tasking pro-

cedure declaration is shown in Figure 5-8.

procedure initrate_group_tasking ;

Figure 5-8. Initialize Rate Group Tasking Procedure

After init_rate__group_tasking creates the task lists it then initializes the scheduling pa-

rameters for each task in the lists. The rate group dispatcher will be the first task in the

RG4 list. Its execution priority is set to rg_dispatcher_.priority and it is set to start execu-

tion when the start_rg_tasking event is set and to thereafter resume execution after every

minor frame period interval. The execution priorities of the remaining tasks in the RG4 list

are set to rg4_.priority and they are set to resume execution whenever the rg4_event is set.

The priorities of the tasks in the RG3, RG2, and RG1 lists are set to rg3__priority,

rg2..priority, and rgl_priority respectively and they are likewise set to resume execution

whenever the rg3event, rg2event, and rgl_event is respectively set.

The task priority is used to provide preferred execution of the rate group dispatcher and

tasks in faster rate groups when tasks in multiple rate group are executable. The priority

declaration is shown in Figure 5-9. Lowest priority is 0 and highest priority is/5.
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main_priority

rg_dispatcher_priority

rg4_priority

rg3..priority

rg2..priority

rg l_priority

• constant := 10

• constant := 9;

• constant := 7;

• constant := 6

• constant := 5;

: consiant := 4;

Figure 5-9. Task Priority

After the return from initrate__group_tasking, main calls initcommunication and

inittimekeeping, init_communication initializes the packet queues used by the communica-

tion services and is described in Section 5.5_2_ init_timekeeping sets up the local VG's rate

group frame phase and returns when the time management service has been started. It is

described in Section 5.4.1.

The start_rg_tasking event is set by main after the return from init_timekeeping. All the

rate group tasks have suspended themselves during elaboration and are waiting to be re-

sumed based upon their scheduling parameters set up in init._rate..group_tasking. When

startrg_tasking is set, the rate group dispatcher is placed on the RTS ready queue and will

begin execution when the higher priority main task completes. At the event, the rate group

dispatcher is also placed in the RTS delay queue and will be resumed by the RTS every mi-

nor frame period thereafter. After setting the event, main is suspended, the rate group dis-

patcher resumes execution, and rate group tasking has started.

5.3.2. Rate Group Dispatcher

The rate group dispatcher is a special RG4 task that is responsible for controlling the

execution of the rate group tasks and providing reliable communication between rate group

tasks throughout the system. It executes at the start of each minor frame and based upon

the minor frame index determines the corresponding rate group frame boundaries. It

checks that the tasks in these rate groups have completed an iteration of their execution cy-

cle and uses the communication services totransmit the messages queued by these tasks

and to update the set of messages available for their retrieval. It then sets the events to trig-

ger the next execution cycle of these tasks _d suspends itself. These rate group tasks and

any slower rate group tasks which have an execution cycle still in progress then resume ex-

ecution based upon their assigned rate group and precedence within the rate group. The

mapping of rate group frames to minor frames is shown in Figure 5-10.
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minor frame index:
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%%%%%%%%

_ F r a m e %k,_5,%F r a me _'_3

_RG2 Frame _G2 Frame i

Figure 5-10. Mapping of RG Frames to Minor Frames

During elaboration the rate group dispatcher suspends itself and will not be resumed

until the start_rgtasking event is set. When the start_rgtasking event is set and the higher

priority main task suspends itself, the rate group dispatcher will begin execution of its first

cycle and will repeat its execution cycle every minor frame period thereafter. At the start of

each cycle, the rate group dispatcher records a congruent value of the current time. It then

determines the slowest rate group whose frame boundary corresponds to the start of this

minor frame. Because of the mapping of rate group frames to minor frames, all faster rate

groups will also be at a frame boundary and the identifier of the slowest rate group is used

to indicate the entire set of rate groups at a frame boundary.

The send_queue and update_frame_marker communication services are then called and

passed the identifier of the slowest rate group at the frame boundary, sendqueue transmits

all the messages enqueued by the tasks of the corresponding rate groups in their previous

frame, update_frame_marker updates the communication service pointers to provide a

congruent of set of received messages and free buffers to the rate group tasks throughout

their frame, send_queue and updateframemarker are described in Section 5.4

frame_start is then called and passed the slowest rate group identifier and the time

recorded by the rate group dispatcher at the start of this execution cycle. It uses the time

value to update the time latch for each of the corresponding rate groups. A time latch is

provided for each rate group and is used to latch the time of the start of the rate group

frame. It is the only value of time which is guaranteed to be congruent during the task's •

execution and the only value of time which should be used by rate group tasks, frame__start

then uses the rate group task lists to determine the tasks executing in the indicated rate

groups and checks the overrun condition of each of the tasks. If a task has overrun the

condition is logged in the rate group dispatcher log. The log can be examined from the

terminal display. It then sets the appropriate rg4_event, rg3event, rg2_event, or
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rgl_event to ready the tasks in the indicated rate groups for their next execution cycle. The

frame_start procedure declaration is shown in Figure 5-11.

procedure frame_start( ....

slowest_rg "in rg_type;

congruenttime "in time);

Figure 5-11. Frame Start Procedure

After theframestart procedure is exeeu!ed, the rate group dispatcher then increments

the minor frame index and suspends itself until the start of the next minor frame. This al-

lows the lower priority tasks which were previously executing or which were readied for

execution by setting the rate group events to=begin execution based upon their priority and

precedence.

The RG 1 frame boundary is a special condition. Because all rate groups have a frame

boundary at the RG1 frame boundary, this point defines where the memory used by the

rate group tasks will be congruent on all members of the VG and can be successfully

aligned. It is only at these points that the rate group manager will attempt to recover a failed

processor by invoking lostsoul. If lostsoul is required, then it will be called by the dis-

patcher after update_framemarker at the start of the first minor frame. If no channel is re-

covered in lost_soul then the remainder of the frame should proceed normally. If a channel

is recovered then some frames may be slipped because of the recovery process. A detailed

description of processor recovery is contained in Section 5.6.

5.3.3. Rate Group Tasks

Rate group tasks must be uniquely associated with a communication id and a corre-

sponding task configuration table entry as described in Section 5.2.2. The table entry

must be initialized to specify whether the task is executing on one VG or executing on all

VGs. System service tasks normally execute on all VGs. If a task executes on all VGs

then broadcast messages can be used to send a message to all instantiations of the task.

Otherwise the task instantiation must be identified by specifying the hosting VG id. If a

task will execute on only one VG then that VG must be specified in the table and the tasks

communication id is sufficient to uniquely identify the task. The task's rate group and

precedence within the rate group must also be specified. This determines how often the

task will execute and the order in which tasks in the same rate group and on the same VG

will execute. The local RTS identifier mus! also be specified to provide the link between

the logical communication identifier and the actual task.

Page 5-15



The maximum number and maximum size of messages that each task will queue for

transmission and that may be queued for its reception must be specified. These values are

used to allocate packet buffers for the task's messages. Each task has private and separate

outgoing and incoming message queues. A given task's queue operations (including over-

flows) have no effect on the state of other tasks' queues. If an executing task attempts to

enqueue a message to a full outgoing message queue, an error indication is immediately

returned to that task, with the outgoing queue and message to be enqueued being left un-

changed. In the event of incoming queue overflows, the AFTA operating system indicates

the number of incoming messages that have been discarded to the task which would have

received the messages had the incoming queue overflow not occurred. Tasks should be

designed to check this indication of discarded incoming messages and perform appropriate

application-specific recovery from this error condition. An example of such a recovery

policy would be to utilize stale input data instead of input data derived from the discarded

input message. Note that all members of a redundant VG have an identical view of both

outgoing and incoming message queue overflow conditions. In addition, tasks are never

presented with a message queue containing partial messages, the Ab'TA operating system

ensures that complete messages are delivered from one task to another in the absence of

queue overflows, or no message whatsoever is transmitted.

The task itself must have a well defined cyclic execution behavior. The task and all the

other tasks specified to execute on the VG must complete their execution cycle within their

rate group frame. If they do not, then the rate group dispatcher will detect an overrun

condition for those tasks which did not complete within their frame. These tasks are not

necessarily the ones that caused the overrun condition to occur. Rate group tasks may use

the queuemessage and retrieve_message to communicate between tasks. Both the recep-

tion and transmission of the communication is based on the rate group frame boundary as

described in Section 5.5. This must be accounted for in determining the communication

timing and the message allocation.

An example of a minim',d task is shown in Figure 5-12. Associated with the task decla-

ration is the task id declaration used in the task configuration table initialization. The task

defines my_cid to be its associated communication id. This is used in the communication

and rate group tasking procedures calls to identify the calling task. hum_deleted is used to

indicate how many of the task's messages were deleted in the previous rate group frame

because of insufficient free packet buffers. The allocation specified in the task configura-

tion table initialization should be used to ensure that message are not deleted, frame_time

maintains a congruent value of the time the current rate group frame was started. It should

be the only value of current time that is used by the task.
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task appll_task is

end task;

appll__id " task_id_type :- id(appl l_task' address) ;

task body appll_task is

my_cid • constant communication id type := appll ;

num deleted • natural := O;

frame_time • time := startup_ttme ;

begin

loop

wait_for_next_frame(my cid,num_deletedJrame_time);

end loop;

end task;

Figure 5-12. Example Rate Group Task

The task begins execution during elaboration and may perform data initialization. The

hosting VG id is not known at this time and the initialization will occur on all VGs even if

the task will not being executing or a particular VG. It must suspend itself using

wait_for_next_frame to end its task ela_tion. Based on the local VG id and the task

configuration table, the task instantiations are then selectively resumed when rate group

tasking begins. When the task is resumed itreturns from wait_for_next.frame with the

num_deleted and frame_time values updated: The task should then begin its cyclic execu-

tion. At the end of its cycle it must again call wait.for_next_frame to perform its self sus-

pension. The wait_for_next_frame procedure declaration is shown in Figure 5-13.

procedure wait_for_next_frame(

cid : communication_id_type;

deleted_messages : out natural;

frame_time : out time);

Figure 5-13. Wait for Next Frame Procedure

wait_for_next_frame uses cid to identify the rate group of the caller and access its

cid status record maintained by the communication services. When wait_for_next.frame

is executed it suspends the calling task. To resume execution, the rate group dispatcher

must set the appropriate rate group event. Prior to setting the event, the dispatcher can use
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the RTS to examine the execution status of the task. If it is not suspended then an overrun

condition exists. When the event is set the task resumes execution inside the

wait_for_next.frame procedure. It uses the congruent time latches maintained by the rate

group dispatcher to update frame_time and the communication service's cid_.status_record

to update deleted_messages, wait_fornext_frame then returns to the calling task to begin

the next execution cycle.

5.4. Time Management

The time management service is executed on each processor in the AFTA to maintain

congruent execution between the members of a VG in the presence of timer based events

and to provide a consistent system time for all the VGs. The system time is maintained by

the Network Element aggregate as the elapsed time since system start up. When a packet is

received by a Network Element the system time is written to the packet's corresponding de-

scriptor field. This time information is used by the time management service to define ab-

solute time. Each processor in the AFTA locally maintains a timer to measure the elapsed

time since the absolute time was updated. This timer is used to generate periodic interrupts

to define the start of each minor rate group frame and to trigger the update of the absolute

time. The interrupt causes preemption of the currently executing task by the rate group dis-

patcher. The execution state of the system must be well defined at these points to maintain

congruent execution. This is provided by the rate group tasking implementation.

The system time maintained by the Network Element and its timestamp of delivered

packets has been discussed previously. Section 5.4.1 will discuss the initialization of local

time management on each processor of the AFTA. Section 5.4.2 will discuss the timing

model used by the RTS and the operation of the time management service.

_4.1. Time Management Initialization

System time keeping is started by the Network Elements during Network Element ini-

tialization and is maintained by the Network Elements throughout system operation. The

time management service on each processor of the AFTA is closely coupled with their exe-

cution of the rate group tasking paradigm and must not be started until the VG is ready to

begin operational execution of the paradigm. Prior to that time each VG is waiting for ini-

tialization directives from the system manager VG. These messages do not go through the

communication services and are read synchronously by the main task. The timestamps as-

sociated with these message are used to update the local value of absolute time, but the local

timers are not active and no timer based interrupts are generated.

The VGs will receive the system manager directive to begin operational execution after

all other VG initialization has been completed. This message will be a broadcast to all VGs

and the timestamp of the message will used as the base time for starting rate group tasking
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on all VGs with the phasing specified in the rate group phase table described in Section

5.3.1. When the message is received, each member of a VG sets its local timer to generate

an interrupt based on the VG's assigned phase. When the interrupt is generated, the first

frame of rate group tasking is started and subsequently an interrupt will be generated every

minor frame period. The time management service now begins operation and is responsi-

ble for coordinating the local timer with theN e_twork Element system time and maintaining

the phasing specified in the phase table. Its operation is described in the next section.

init_timekeeping is the procedure responsible for starting the time management service with

the appropriate phase. Its declaration is shown in Figure 5-14.

procedure inittimekeeping(phase " in time); I
Figure 5-14. Initialize Time Keeping Procedure

init_timekeeping is called from the main_task after all other VG initialization has been

completed and the directive from the system manager to begin operational execution has

been received. The timestamp of this message is the reference time for the phasing of rate

group frames across all VGs. The reading of the message has also updated the local value

of absolute time to this value, init_timekeep!ng is called in response to the directive and is

passed the delay corresponding to the phase specified for the VG in the rate group phase

table. It sets the local timer to generate an interrupt when the delay has expired and enables

generation of the receive message interrupt from the Network Element. Messages can now

be read asynchronously and will be processed by the communication services.

inittimekeeping then suspends itself until after the interrupt. When the interrupt is gener-

ated the time management procedures descried in the next section begin execution.

Normally the rate group dispatcher would be resumed immediately after the interrupt.

At the first timer interrupt only, the main task is still executable and will be resumed after

the interrupt, inittimekeeping will return to main and it will set the startrg_tasking event

to start execution of the rate group dispatcher, main will then terminate its execution and

allow the lower priority rate group dispatcher to execute. It is necessary to coordinate the

start of time management and the execution of the rate group dispatcher to ensure that the

dispatcher and the rate group tasks have a fu_!! minor frame period to execute. Otherwise,

our task completion guarantees are not valid _nd a frame overrun condition may result.

5.4.2. Time Management Operation

After the time management service has been started, a chiming model is used to main-

tain the local value of system time on each processor of the AFTA. The local timer is used
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to generatethechimeeveryminorframeperiodoneachmemberof a VG. When the chime

is generated, the VG members resynchronize and congruently update the local value of

system time with the system time maintained by the Network Element. The updated time

may not agree with the expected time of the chime and this difference is used to adjust the

next chime interval and maintain a constant frame phasing among the VGs in the system.

The local value of system time is only updated at the chime interrupt and is the only time

value provided to the remainder of the RTS.

Time management is provided by the chime interrupt handler. It will execute at each

minor frame boundary and the rate group tasking paradigm must guarantee that no packet

transmissions are in progress on any of the VG members when the chime is generated.

Packet receptions may be in progress because of the asynchronous packet reception pro-

vided by the communication service. The packet reception interrupt has higher priority than

the chime interrupt and will execute to completion prior to the chime interrupt being ser-

viced. When the chime interrupt handler is executed, it disables the packet reception inter-

rupt and sends itself a synchronization packet to flush all received packets from its Network

Element buffers. It reads and handles packets in the same manner as the packet reception

handler until the synchronization packet is found. It then sends itself an additional syn-

chronization packet through the flushed network and uses the timestamp of this packet to

update the local copy of system time.

The chime interrupt handler then determines the expected time of the next chime inter-

rupt by adding the minor frame period interval to the expected time of the current chime. It

records this value and sets the next chime to generated after an interval corresponding to the

difference between this value and the system time last read from the Network Element.

This will maintain the rate group phase relationship between the VGs. The chime interrupt

handler then enables the Network Element packet reception interrupt and returns to the

RTS. The RTS reevaluates the scheduable tasks based on the updated time. The rate

group dispatcher will now be placed on the ready queue and resume operation because it is

the highest priority ready task.

5.5. Communication Services

The communication services are used to communicate between rate group tasks. Each

rate group task has a global communication id which can be used as its logical address.

Other tasks in the system can send messages to this address and the communication ser-

vices will map the logical address to the VG executing the task. The communication is in

the form of messages enqueued by the sender for transmission at the start of the next rate

group frame and dequeued for reading by the recipient task within the next rate group frame

after it is received. Messages are delivered in the same order at all common destinations

and are delivered in the order in which they were sent.
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The communication services are composed of message based interface procedures used

by rate group tasks and lower level primitives used by the rate group dispatcher. The

communication service primitives manipulate the messages as a sets of queued packets.

The message and corresponding packet structures are described in Section 5.5.1. The

communication service initialization and associated control structures are described in Sec-

tion 5.5.2. The message transmission procedures are described in Section 5.5.3 and the

message reception procedures are described in Section 5.5.4.

5.5. I. Message and Packet Structure

The rate group tasks have a message based interface to the communication services.

The message itself is a contiguous block of data that is transferred from the sender to the

receiver. The block must be no larger than the maximum message size defined for the sys-

tem. Associated with the message are descriptor fields describing the sender, receiver, type

of message, and how the message is to be exchanged. The message and message descrip-

tor fields are supplied to the communicati0nservices by the task wishing to send a mes-

sage. The communication services then perform the exchange and deliver the message and

descriptor information to the receiving task when it requests delivery of its messages.

Internally, the communication services store and manipulate the message as a set of

fixed size packets. A packet is the exchange unit used by the Network Elements. The mes-

sage descriptor fields are mapped to packet descriptor fields and a message header. The

packet descriptors are sent with each packet and the message header is prepended to the

message data and sent only in the first packet of the message. The message and packet

structure for task-to-task communication is shown in Figure 5-15.

The message descriptors consist of the destination VG id, the destination communica-

tion id, the source VG id, the source communication id, the message class, and the size of

the message data. The destination VG idis Supplied by the sending task and used in the

packet exchange, but is not delivered to the receiving task. The source VG id is not sup-

plied by the sending task, but is provided by the Network Element with each delivered

packet. It is provided as a message descriptor to the receiving task.

The VG id is used to specify a virtual group and the communication id is used to spec-

ify a task executing on the VG. The message size specifies the size of the message data in

bytes. The message class is used to specify whether the message should be broadcast to all

VGs, whether the message is task-to-task data or task-to-ne data, and whether the message

should be a voted or a single source exchange.

Broadcasts messages are only useful when the destination task has an instantiation on

all VGs. In addition, they monopolize bandwidth and can cause flow control problems.

For this reason it is the intent to limit the use of broadcast messages to system service
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tasks. Task-to-ne data is send by system services to update the NE configuration table,

generate voted resets, and perform initial synchronization. All other tasks must send only

task-to-task data.

The packet descriptors consist of the destination VG id, the destination communication

id, the source VG id, the message class, and a boolean indicating whether this is the last

packet of the message. All except the last packet boolean and the source VG id are copied

directly from the message descriptor. The packet descriptors are included with every packet

and are always voted by the Network Elements. This is true even for single source ex-

changes where the corresponding packet data is not voted, but congruently replicated from

the single source. This guarantees that a single member of a redundant VG cannot cause

this information to be corrupted on the delivered packet.
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Figure 5-15. Task-to-Task Message and Packet Formats

The source VG id and the last packet boolean are used by the receiving VG's communi-

cation services to link the packets of a message together. Within the AFTA, the communi-

cation services of each VG will send all the packets of a message before it starts sending the

next message. Therefore, all the packets from a VG will belong to the same message until

the last packet boolean is true. Then the next packet will be the start of a new message.

The destination cid is used by the receiving communication services to determine the correct

queue for the packet. The source VG id is supplied by the NE witheach delivered packet

and is copied to the receive message descriptor.
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In additionto thepacketdescriptors described above, a packet syndrome and packet

dmestamp are also provided by the NE for each delivered packet. These fields are main-

tained in the queue of received packets and are used by system services, but they are not

propagated to the receiving task.

The message header is only prepended to the message data for task-to-task data and is

sent in the first packet of the message. It is not included when task-to-he data is to be sent.

The message header consists of the source communication id and the size of the data in the

last packet. The source communication id is used only as information to the receiving task.

The size of the data in the last packet is used with the number of packets in the message to

determine the message size. This is copied to the receive message descriptor.

The header information is included in the packet data and will not be voted during sin-

gle source exchanges. A single member of a VG may therefore cause this information to be

faulty in the delivered message. Corrupted data will not cause loss of system service, but it

may confuse the receiving task. Tasks should be written to tolerate this condition if they

expect to receive single source messages.

5.5.2. Communiea690 Services Initialization

A transmit packet queue and a receive packet queue are maintained for each cid. They

are the buffers between the underlying packet based communication primitives which di-

rectly access the Network Elements and the message based communication services which

are used by the rate group tasks. The transmit queues are used to guarantee that the packets

written to the NEs by the members of a VG have a consistent ordering. The receive queues

are used to guarantee that rate group tasks see a consistent set of available messages. Both

these conditions are necessary to guarantee that the members of a VG do not diverge.

Each queue is portioned into a set of active packets followed by a set of free packets.

The active transmit packets contain data waiting to be written to the NE. The active receive

packets contain data waiting to be read by a task. During initialization all the packets allo-

cated for a task are placed in the free portion of the respective transmit or receive queue.

The allocation is based on the values specified for the corresponding task in the task com-

munication table described in Section 5.2. The queues are maintained as linked lists with

pointers to the entry at the head of the active portion, to the entry at the head of the free

portion, and to the entry at the tail of the free portion.

In the transmit queues, entries are moved from the free portion to the active portion

when a message is enqueued by a task. This transition is performed by using the entries at

the free head to store the packetized message and then making the free head point to the

next free entry in the queue. Entries are removed from the active portion and replaced in

the free portion when the stored packets are written to the Network Element. Only the en-
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try at the active head is written. After it is written, it is removed from the active head and

replaced at the free tail and the active head _d free tail are updated. The transmit queues

are maintained as singly linked lists. An example of the transmit and receive queues is

shown in Figure 5-16.

active head m w active head

active frame

free head J
f

I !
f

free tail [ I

Transmit Queue

free head [ J

f
I I

free frame I ]

t
"ee'a"l I
Receive Queue

Figure 5-16. Transmit and Receive Queues

In the receive queues, entries are moved from the free portion to the active portion

when a packet is read from the Network Element and the transition is the same as in the

transmit queues. Entries are removed from the active portion and replaced in the free por-

tion when a task retrieves a message. Because the packets of messages may be interleaved,

entries may be removed from anywhere Within the active portion. The entries in this por-

tion of the queue are doubly linked so the linked list can be maintained when entries other

than those at the active head must be removed. The removed entries zre replaced at the free

tail and the active head and free tail are updated as necessary.

Maintaining separate queues for each cid guarantees congruent ordering of input and

output messages for the corresponding task, but it does not guarantee the timing of the

packet events within the rate group frame with respect to other members of the VG. The
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only guarantee is that at the rate group frame boundary an identical set of events will have

occurred on all members of that rate group. Controlled access to these queues with in the

rate group frame is necessary to prevent divergence of the VG members. Access to the

transmit queues is controlled within the communication service primitives by only writing

packets to the Network Element at the rate group frame boundary and then writing all en-

queued packets. This guarantees that all the queue entries will be in the free portion of the

queue at the start of the frame. The completion of the task within its rate group frame guar-

antees that the each member of a VG will have a congruent set of packets in the active por-

tion of its transmit queue when the packets are sent at the end of a frame.

Unlike the transmit queues, the receive queues may be updated by the communication

primitives throughout a rate group frame. This is done whenever the packet reception inter-

rupt is generated by the Network Element. In order to maintain congruent operation, a

frame marker is provided for the active portion of each receive queue to indicate the packets

which were read from the NE prior to the start of the current frame. The packets between

the active head and the active frame marker are guaranteed to be present on all members of

the VG and are made available for reading by the task if they compose a complete message.

The free portion of each receive queue must also have a frame marker. This is necessary to

ensure that a consistent set of free entries is available within the rate group frame for new

packets read during the frame's execution. Otherwise, some members of a VG may have

no free entries for a packet to a given task, while others do have a free entry and continue

normal execution. The entries between the free head and the free frame marker are guaran-

teed to be free on all members of the VG and are usable to store received packets. The

frame markers for a given queue are only updated at the rate group frame boundary for the

corresponding task.
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type xmit pktrecord;
type access_xmit_pktrecord is access xmit_.pktrecord;
type xmit..pktrecord is record

nextin_queue • access_xmit_pkt_record;
message_class •message__class_type;
to_vg " vg_id_type ;

to cid: communication_id_type;
laSt_packet • boolean;

packet "message_data_record;
end record;

type rcve..pktrecord;

type access_rcve pktrecord is access rcve_pkt_record;
type rcve_.pktrecord is record

nextin_queue "access_rcve_packetrecord ;
previous_.in_queue " access rcve_.packetrecord;
first_in_message " access_rcve_acketrecord;
nextin_message • access_rcve_packetrecord;

message_class "message_class_type;
from_vg " vg_id_type ;

to cid: communication_id_type;
lab..packet "boolean;

syndrome "syndrome_type;
timestamp • timestamp type ;

packet "message_data_record;
end record;

Figure 5-17. Transmit and Receive Packet Queue Entries

The transmit and receive queue entry declaration is shown in Figure 5-17. The transmit

and receive queues use next in queue as their forward link to the next entry in the list and

if the entry is in the free portion this is the entry's only valid field. Entries in the active

portion of the receive queue use previous in queue as their backward link to remove en-

tries from the middle of the queue and use first in message and nextin_message to re-

construct packetized messages, first in message is null except in the last packet of the cor-

responding message. There it is set to point to the first packet of the message. This infor-

mation is used to search the queue for the first completed message, next in message is

used to reconstruct the message once a completed message is found. The previ-

ous in queue,firstin_message, and next_in_message fields are not necessary for the
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transmit queues because the messages in the transmit queues are stored in contiguous

packets.

The remaining fields are partof the packet descriptor and the packet data as described in

the previous section. The message class and message data declarations are shown in Fig-

ure 5-18. message_data_type indicates whether the data is being sent task-to-

task(task data) or task-to-ne(ct_update, voted_reset, or init_sync), mes-

sage_exchange_type indicates whether the data is to have a voted exchange or a single

source exchange, message_data_record is a discriminant record that can contain the mes-

sage header for the first packet in a task-to-task message or contain only message data for

subsequent packets in the message or for task-to-he messages.

type message_data_type is (task__data,ctupdate,voted_reset, init_sync);

type message_exchange_type is (sync, vote,A,B,C,D,E);
type message_class__type is record

broadcast : boolean;

data_type : message_data_type;
exchange_type : message_exchange_type;

end recora;

when

end case;

end record;

type message_datarecord(header: boolean) is record
case header is

when TRUE = >

from_cid • communication id type;
last_.packetsize "natural;
data "array (3..packet_size) of unsignedbyte;

FALSE =>

data • array (1.. packetsize) of unsigned_byte;

Figure 5-18. Message Class and Message Data Structure

The pointers used to access each queue are maintained in a queue table. The table is

referenced by cid and is initialized by the in#communication procedure. The table decla-

ration is shown in Figure 5-19.
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type cid_queue_record is record
xmit active head : access_xmit._pkt__record;
xmiCfree._head " accessxmit..pktrecord;
xmit_f'ree_tail : accessxmit_.plct_record;

rcve active head'access_rcve_.pkt_record;
rcve-active--frame : access_rcve pktrecord;

rcve_free_head " access_rcve_pkt_record;
rcve_free_frame " access_rcve_pktrecord;
rcve_freetail " access_rcve_pkt record;

end record; .........

type cid_queue_array is array (communication_id_type) of
cidqueue_record;

cid_queuetable " cid_queue_array ;

Figure 5-19. CID Queue Table

init_communication uses the task configuration table and rate group task lists described

in Section 5.3 to allocate packet entries for the tasks which will be executed locally. For

each of these tasks, entries are allocated from memory based upon their transmit and re-

ceive memory requirements specified in the task configuration table. These entries are

placed in their respective transmit and receive queues and the remaining queue pointers are

initialized. A warning will be generated if there is insufficient memory to allocate the re-

quired number of packets, initrate__grouptasking must have been called previously to

initialize the rate group task lists. After iniicommunication is called, the communication

services are ready to begin operation, but the packet reception interrupt from the Network

Element has not yet been enabled. The inte_pt is enabled when the directive to begin rate

group tasking is received from the system manager VG and inittimekeeping is called.

When the interrupt is disabled the communication services can be bypassed and this is the

operational mode during system initialization. The ink_communication declaration is

shown below.

procedure init_communication;

Figure 5-20. Initi',dize Communication Procedure

at
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5.5.3. Message Transmission

Procedures are provided to immediately transmit a message or to enqueue the message

for transmission at the end of a rate group frame. Immediate transmission may only be per-

formed by the rate group dispatcher or RG4 tasks and is done using sendmessage. En-

queued message transmission must be done by RG3, RG2, and RG1 tasks. It may also be

done by RG4 tasks and the rate group dispatcher. The message is enqueued using

queue_message and is transmitted by the rate group dispatcher using send_queue.

send_message bypasses the transmit queue and directly accesses the Network Element

to transmit a message. It must not be preempted, otherwise members of the VG may write

different data to the NE and diverge. For this reason only the rate group dispatcher and

RG4 tasks are allowed to use send_message. These tasks are guaranteed to complete their

iteration every minor frame and will therefore not have pending calls of send_message

when the frame expires, send_message should be used only if it is absolutely necessary

and under well defined operating conditions. It is especially dangerous if hardware flow

control gets asserted because the message transmission (and hence the transmitting task)

will be stalled in a busy wait until the flow control condition is cleared. Stalling a nonpre-

emptive RG4 task for an excessive amount of time could result in a cascade of frame over-

runs. The send_message declaration is shown in Figure 5-21.

type send_.error_flag_type is (no_errors, illegal_message,

illegal_.destination, inactive,destination);

procedure send_message is (

source cid • in communication_id_type;

destination cid • in communication id type;

destination_vg "in vg_id_type ;

message_class "in message_class_type;

messageaddress : in address;

messagesize • in natural;

error_flag • out send_error_flag_type);

Figure 5-21. Send Message Procedure

source cid is the communication id of the caller. It is included for possible use by the

receiving task. destination_cid is the communication id of recipient. It used to access the

task configuration table and determine where the destination task is executing. If the task is

executing on all VGs then destination_vg is used to determine which instantiation of the

task should be sent the message, message_class is used to determine the type of message
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which is to be sent. message_address is the starting address of the data to be sent. mes-

sage_size is the size of the data in bytes. The procedure returns the completion status in er-

ror.flag, no_errors indicates the operationlwas performed, illegal_message indicates the

data size was not acceptable or the addres_ could not be accessed, iUegal_destination in-

dicates an illegal combination of destination eid, destination VG, and/or message class, in-

active destination indicates the destination cid was not active.

queue_message is used by rate group tasks to queue messages for transmission by the

rate group dispatcher at the end of their fHram_e.When it is called by a task the source cid is

examined to determine where to queue the message. The message size is then examined to

determine if there are enough free transmit packet buffers to enqueue the message. If there

are, then the packet descriptors and a message header are constructed and the message is

parsed and written into the free packet buffers. These packets are then removed from the

free list and placed on the task's transmit active queue. If there are insufficient buffers then

a failure condition is returned. The queue_message declaration is shown in Figure 5-22.

type queue_error_flag_type is (noerrors, illegal_message,

illegaldestination, inactive_destination, insufficient free_entries);

procedure queue_message is (

source cid "in communicatio__id..type;

destin_ion_cid • in communication id_type;

destination_vg • in vg_id_type;

message_class ' in message_class_type;

message_address "in address;

message_size "in natural ......•

error_flag • out queue_error_flag_type);

Figure 5-22. Queue Message Procedure

The parameters of the queue_message are the same as send_message, source_cid is

now also used to determine in which queue the message belongs. An insuffi-

cient_free_entries flag is provided to indicate there are not enough free packet buffers to

enqueue the message.

At the end of each frame, the rate group dispatcher determines the corresponding rate

group frame boundaries as described in Section 5.3.2. The dispatcher calls send_queue

with the slowest rate group at a frame boundary as its parameter. Because of the mapping

of rate group frames to minor frames, all faster rate groups are also at their frame bound-

ary. send_queue examines the cid_queue_record for all the tasks in the indicated rate
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groups and transmits all their enqueued messages. Any incomplete messages in the queue

are flushed. This indicates a task overrun or other error condition and is logged. The

send_queue declaration is shown in Figure 5-23.

procedure sendqueue is (slowest_rg : in rg_type);

i i _R i i i ,i

Figure 5-23. Send Queue Procedure

5.5.4. M_ssage Reception

Messages may be read by the receiving tasks using read_message or retrieve_message.

The rate group dispatcher and RG4 tasks may use read_message. It is a blocking call that

returns the next message for the caller. The message may already be in the receive queue or

it may require waiting for additional packets to read from the NE. RG3, RG2, and RG1

tasks must use retrieve_message. It returns the next message for the task if it exists in the

receive active queue between its head and the frame marker. Otherwise, it returns a failure

status, retrieve_message is also useable by RG4 tasks and the rate group dispatcher, up-

date.frame_marker is a specialized procedure provided to the rate group dispatcher to up-

date the receive queue frame markers for the tasks in the indicated rate groups.

Packets are asynchronously read from the Network Element throughout the VGs execu-

tion in response to an NE generated packet ready interrupt. As each packet is received, the

communication services read the associatedfrom_vg descriptor and examine the associated

message pending table entry. The message pending table indicates whether there is a mes-

sage in progress from the sending VG. If there is, then this packet must belong to that

message and it is linked to the previous packets of the message. Otherwise it is the fin'st

packet of a new message and tile to_cid descriptor is examined to place it on the appropriate

queue. The message pending table declaration is shown below.
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type message..pending_record is record

first..packet : access packetrecord;

previous_packet : access_packetrecord;

message_deleted : boolean;

end record;

message..pending_table : array (vg_id_type) of

message_pendingrecord;

Figure 5-24. Message Pending Table

If a message is in progress from the sending VG then first..packet points to the first

packet of the message. If the last_packet descriptor field indicates this is the last packet of

the message, then thefirstin_message field for this packet is set tofirst_.packet. This is

used to search the queue for completed messages, previous_.packet points to the previous

packet of the message and is used to link this packet with the previous packet of the mes-

sage. message_deleted is a boolean indicating whether the pending message was flushed

because of insufficient free packet buffers, If message__deleted is true then all subsequent

packets of the message are also flushed. .....

If there are no available buffers to store a received packet then that packet and all the

other packets of the message are flushed. The available buffers are those in the recipient

task's receive free queue between its head and frame marker. Limiting the task's message

storage to its allocated set of buffers controI _ propagation of the task's fl0w control prob 7

lem. Limiting the use of free entries to thosebetween the head and frame marker guarantee

congruent behavior between the members of the VG.

When a packet must be flushed,first_packet in the message pending table is used to

determine if previous packets of the message have been read. If they have, then the asso-

ciated queue entries are removed from the active portion of the queue and placed at the head

of the free portion. This violates the queue paradigm described previously, but minimizes

the number of deleted message by allowing reuse of the buffers during the current frame.

Otherwise the buffers would placed at the tail of the free queue and would not be useable

until the next frame update.

A counter of the messages deleted in the current frame is then incremented. If this is

not the last packet of the message, then messagedeleted is set to true. All subsequently

read packets of the message are deleted and when the last packet of the message is read the

message pending table is readied for the St_t of the next message. The messages deleted

counter is maintained in the cid status table sl_own in Figure 5-25.
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type cid status record is record
delete-d in Fast'natural;

deleted in current •natural;
end recorc_ -

type cid__status_arrray is array (communication_id_type) of
cid_status_record ;

cid_status_table "cid_status_array ;

Figure 5-25. CID Status Table

The information made available to the tasks about the number of messages deleted must

also be based on their rate group frame to guarantee congruent operation. When a message

is deleted the deleted in current field is incremented. At the next frame boundary, this in-

formation is transferred to deleted in last and made available to the task whose messages

were deleted.

The frame markers make the asynchronous reception transparent to the rate group tasks

except for loss of execution time in the frame and a possible increase in execution skew.

The interrupt is disabled when the synchronization packet used by update_frame_marker is

read. This is necessary to guarantee a consistent state when update_frame_marker updates

the control structures. After the control structures are updated the interrupt is enabled and

the corresponding interrupt handler is again used to read packets during the remainder of

the frame.

readmessage returns the next available message to the calling task. It must be called

only by the rate group dispatcher or RG4 tasks. It first looks for a completed message to

the calling task starting from the head of its receive active queue. If a completed message is

not found between the queue head and the queue frame marker, then read_message may

use packets beyond the frame marker. If a completed message is not found in the queue

then it waits for packets to be added to the queue by the asynchronous receive packet inter-

rupt handler until a completed message is found. If the last packet of the completed mes-

sage is past the frame marker, then the frame marker for that queue is updated to the last

packet. This is allowed because all the members of the VG are guaranteed to read the same

set of packets prior to reading the last packet. Because of the asynchronous packet recep-

tion, no conclusion can be determined about packets after the last packet of the message or

packets in other queues. The asynchronous reading of packets also disallows updating the

task's receive queue frame marker, readmessage may take an indefinite amount of time

and should only be used if absolutely necessary and under well defined operating condi-

tions. The declaration of the read_message procedure is shown in Figure 5-26.
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type read..error_flag is (no_errors,buffer_too_small);

procedure read_message is (
source._cid •out communication id_type;
source_vg • out vg_id_type;
destination cid "communication id_type;
message._cfass •out message__class_type ;

message..address : address;
message_size • in out natural
error_flag • out read_error_flag,type);

Figure 5-26. Read Message Procedure

read_message is passed the destination cid, message_address, and message_size.

destination_cid specifies which receive queue to examine, message_address and mes-

sage_size describe the buffer in which the task wants its message to be copied. If the

buffer is not large enough for the message then buffertoo_small is returned in error.flag

and the actual message size is returned in message_size, source_cid, source vg, mes-

sageclass, and message_size are copied from the received message descriptors.

update_frame_marker is called by the rate group dispatcher at a rate group frame

boundary. It is used to congruently update the set of packets useable by the tasks in that

rate group within their next frame. Whet!__iS called it sets the receive free queue frame

marker to the receive free queue tail for all the tasks in the rate group. Because the tasks in

this rate group have completed their execution at the frame boundary this provides the same

set of free buffers for use when reading packets within the frame. It then sends itself a

class0 synchronization packet and waits Until this packet is written to its receive queue.

When the synchronization packet is read by the receive interrupt handler, the handler dis-

ables the packet reception interrupt. This ensures that the same set of packets will have

been read on all members of the VG whenupdate_frame_marker resumes execution and

sees the synchronization packet in its receive queue, update_frame_marker then sets the re-

ceive active queue frame marker to the receive active queue tail for all the tasks in the rate

group and the messages deleted informati0n in the cid_status..reCord for the corresponding

tasks is also updated. The deleted_incurr_nt field of the cidstatus_record for the corre-

sponding tasks is copied to deleted in last and deleted in current is reset to zero.

deleted in_last is then propagated to each task as a return value from wait_for next_frame

when it resumes execution. When the da_fflstructures have been congruently updated up-

date_frame_marker re-enables the packet receive interrupt. The update_frame_marker pro-

cedure declaration is shown in Figure5-27.



procedure update_framemarker is (slowestrg : rg_type);

Figure 5-27. Update Frame Marker Procedure

slowest_rg is the rate group frame boundary corresponding to this call of up-

date_frame__marker. Because of the dispatching cycle used by the rate group dispatcher,

the frame boundary for any given rate group will also be a boundary for all faster rate

groups. This property is used by the dispatcher and update_frame_marker to remove the

need for multiple calls of update_flame_marker at a given boundary. Instead the dispatcher

calls update_frame_marker with an rg of the slowest rate group at the boundary and up-

date_frame_marker uses one synchronization packet to update the frame markers of the

tasks in that rate group and all faster rate groups.

retrieve_message returns the next available message to the calling task which has been

read prior to the last frame marker. It can be called by the rate group dispatcher or by any

of the rate group tasks, retrieve_message looks for a completed message to the indicated

cid from the head of its receive active queue to its frame marker. If the message is found it

is unpacketized and reconstructed at the message address specified in the retrieve_message

call. The message descriptor fields are then updated and the freed buffers are placed at the

tail of the receive free queue. Otherwise, an error condition is returned. The declaration of

the retrieve_message procedure is shown in Figure 5-28.

type retrieve_error_flag is (no_errors,buffer_too_small, no_message);

procedure read_message is (

source_cid • out communication_id__type ;

source_vg • out vg_id_type;

destination cid • in communication_id_type;

message_class • out message_class_type;

message_address • in address;

message_size • in out natural

error flag "out retrieve_error_flag_type);

Figure 5-28. Retrieve Message Procedure

The retrievemessage parameters ,are the same as read_message except for the addition

of a no_message error flag. This is used to indicate no completed message was found in

the queue.
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5.6. Fault Detection, Identification and Recovery

The AFTA uses hardware redundancy with fault detection and masking capabilities to

provide fault tolerance. This inherent fauJt deiection capability is supplemented with tradi-

tional self test methods to increase AFTA, s coverage of faults.

The fault tolerance provided by the hardware is enhanced by the Fault Detection,

Identification and Recovery (FDIR) functions which are part of the AFTA operating sys-

tem. While the hardware alone in the AFTA could sustain one fault, the FDIR software

allows it to sustain multiple successive faults by identifying a faulty component and mask-

ing it from system operations. Consequentiy,:ihe primary purpose of FDIR is to maintain

correct operation in the presence of hardware faults. To achieve this, FDIR has four main

functions:

• testing of AFTA components, i.e., initiating various test procedures in order to
uncover hardware failures.

• identifying a failed component, i.e,, detecting a fault, isolating it to a single com-
ponent and disabling the faulty component.

• performing a remedial operation, i.e., initiating a recovery operation commensu-
rate with system requirements.

• performing transient fault analysis, i.e., determining whether the error was due to
a transient fault.

5.6.1. System and Test Modes

Each of the 4 primary functions ofFDIRhas various alternatives which arise because

the system operating conditions vary. Since the FDIR functions must be commensurate

with these conditions, numerous options _e posed to match these requirements. Conse-

quently, much of the subsequent discussion on FDIR functions will occur within the

framework of system modes and test modes2

FDIR functions occur at all stages of the AFTA's operations. As the computing system

proceeds through the various system modes from an initial power-on state through a

standby mode to a fully operational mode, the testing methodology also evolves through

various modes of testing commensurate with the operational constraints. During each test-

ing mode, suites of tests are activated to exercise the AFTA components both individually

and systematically as comprehensively as Possible. Specifically, there are three ,test modes

(initial built-in test (I-BIT), maintenance built-in test (M-BIT), and continuous built-in test

(C-BIT)) and three system modes (power-on, standby, operational or mission critical).

Figure 5-29 depicts the interaction of the s_fern modes and the test modes.
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Figure 5-29. System mode and test mode interactions

The I-BIT and the M-BIT are automated sequences of tests which are executed to test

the functionality of the AFTA components. In the I-BIT mode a basic set of tests is exe-

cuted where the primary goal is to ensure the correct operation of all components which are

configured into :he operational system. Although the M-BIT mode is somewhat similar,

philosophically the intent is to extensively test for line-maintenance reasons. The I-BIT is

initiated automatically at power-on whereas the M-BIT is commanded by an operator. Be-

cause the power on sequence is constrained by time the set of tests comprising the I-BIT

suite is a subset of the M-BIT test suite. The C-BIT tests are a set of low-overhead tests

which execute during mission critical operations to identify and disable faulty components

and to uncover latent faults.

5_6,2, Off-Line FavlL Detection. Isolation and Recovery

In actuality, the functions encompassing fault detection, isolation and recovery are di-

vided into 3 groups - those diagnostic functions performed by the individual components

(Off-Line FDIR), those functions performed by a single virtual group in monitoring itself

(Local FDIR) and those functions of the system manager which monitor the system com-

ponents globally (System FDIR).

After a system reset occurs or power is applied to the AFTA components, all compo-

nents operate individually rather than systematically as a fault tolerant computer. During

this phase of operation the Off-Line FDIR exercises a sequence of diagnostic tests of the

individu',d components to determine which components shall be incorporated into the initial

configuration of the AFTA.
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5.6,3, ,, Local F_01t Detection. Isolation and Recovery_

After the Network Elements have synchronized with each other the AFTA operates as a

fault tolerant system which provides fault tolerant communication mechanisms to process-

ing entities referred to as virtual groups. Using these communication mechanisms each

virtual group will exercise some level of fault detection and identification (FD1) capabilities

for identification of failures among its processors. Simplex virtual groups may perform

only processor self testing. Fault masking groups which are virtual groups consisting of 3

or 4 members can not only perform various ievels of testing (unlike simplexes) but can also

unequivocally diagnose a failure in a constituent processor. The fault masking virtual

group maintains correct operation even when one of its members has failed. Furthermore,

it may initiate certain recovery options.

5.6.4. System Fault Detection. Isolation and Recovery_

The local FDIR function executing in a virtual group monitors itself and performs some

recovery operation which directly affects itself. However, in order to monitor the AFTA

system globally and also to determine the health of shared components such as the network

elements, a system FDIR is necessary. The system FDIR executes on a single fault mask-

ing group and is responsible for high level testing of the AFTA such as a poll of all virtual

groups within the system. This is particularly important when a simplex virtual group ex-

hibits faulty behavior. Since a simplex cannot mask itself out of the system configuration

via configuration table updates, the system FDIR assumes this responsibility. In addition,

some recovery options require global information regarding system resources; this infor-

marion is unavailable to the local FDIR functions.

The system FDIR function is only one of many system-wide functions of the system

manager.

5.6.5. Operational Modes

The AFTA operations are characterized by 2 distinct modes of operations. When the

AFTA components are initially powered on or when a reset occurs, all AFTA components

are operating independently. The processors on an FCR backplane bus can only communi-
i

_cate with other devices which occupy slois on this bus. The Network Elements in the

AFTA are not synchronized with each other; nor are they performing fault tolerant message

exchanges. During this mode of operation the AFTA is capable of performing only non-

fault tolerant operations. On the other hand, when the Network Elements become syn-

chronized and are capable of performing fault tolerant message exchanges, the AFTA is

transformed into a fault tolerant system.
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Figure 5-30. Operational modes

The off-line FDIR task is solely responsible for all testing activity while the AFTA is

operating as a non-fault tolerant computing system. During fault tolerant operation, both

the local FDIR and the system FDIR tasks share responsibility for execution of all testing

and recovery functions.

5.6.6. Fault Detection Mechanisms

The AFTA is a highly reliable system which achieves its reliability by exploiting the

testing capabilities available in both modes of operation. During non-fault tolerant opera-

tions the AFTA executes device self tests which extensively test the functional subcompo-

nents of the device. These tests directly exercise the functionality of a component. If the

component behavior disagrees with the expected result the tested component is identified as

faulty. These tests are intended to identify faults in a line replaceable module (LRM) with

the emphasis on isolating the fault to a chip-level component. This goal can be achieved

using on-board diagnostic mechanisms or functionally equivalent tests.
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While theAFTA isoperating in a fault tolerant state, the repertoire of tests changes to

include tests utilizing the inherent fault detection mechanisms. In addition, during this latter

operational mode the operating system characteristics also change; a rate group task

scheduling mechanism is activated. Consequently, certain other mechanisms become avail-

able for exploitation.

Although these 2 modes appear to require disjoint sets of test, this is not the case.

When operating in the non-fault tolerant m_e, 0nly the device self tests may be exercised.

However, during fault tolerant operations, system tests are exercisable and some of the

device self tests may be executed provided that they do not violate the operational require-

merits of the AFTA operating system. These constraints will be discussed in subsequent

sections.

5.6.6.1. Enumeralion of Mechanisms

The various tests are able to identify faults in the following AFTA components - pro-.....
__ss_rs_ Network Elements, I/O devices, FCR backplane bus, power conditioners and

mass memory devices.

5.6.6.1.1. Processor Self Tests

The processor self test suite will exercise various components of each processing ele-

ment. Specifically, the tests will exercise the CPU, cache, memory, real-time clock, mem-

ory management unit, floating point coprocessor as well as any on-board I/O functions.

The following tests define the test suite f0r.the Motorola MVME147 single board micro-

computer which will probably be used in the APTA Brassboard. If a different processor is

selected for incorporation into the AFTA a functionally similar set of tests would comprise

the processor self tests.

These following set of tests are executed by a processor on its own constituent compo-

nents.

5.6.6.1.1 .l. CPU Tests

Register - The register test performs a thorough test of all registers.

Instruction Set - This test performs various data movements, integer arith-

metic, logical, shift and bit manipulation functions.

Addressing Modes - This tests the various addressing modes.

Exception Processing This tests many of the exception processing functions.

5.6.6.1.1.2. Cache Tests

Basic Data Caching - This tests the gross functionality of the data cache.
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5.6.6.1.1.3.

5.6.6.1.1.4.

D Cache Tag RAM - This tests the tag RAM by causing accesses to locations

generating a variety of tags.

D Cache Data RAM This tests the data RAM by causing various values to be

written and read from the data cache.

D Cache Valid Flags - This test verifies that the valid flags are properly set

when the associated entry is valid and cleared when the cache is flushed or

the individual entry is cleared.

D Cache Burst Fill - This tests the burst fill mechanism.

Basic Instruction Caching - This tests the basic functionality of the instruction

cache.

Unlike Instruction Function Codes - This tests the ability of the cache to rec-

ognize instruction function codes.

I Cache Disable - This tests the ability to enable/disable the instruction cache.

I Cache Invalidate - This tests the ability to invalidate cache entries.

Memory Tests

Marching Address This tests the address lines for "stuck high" or "stuck

low" conditions.

Marching One - This tests each RAM location's ability to maintain a single bit

in _I1 bit positions.

Refresh - This tests the refresh mechanism by writing a pattern into RAM and

checking it 'after a time period has elapsed.

Random Byte - This tests byte data transfer and comparison operations on

RAM locations.

Program - This tests the RAM's ability to execute a self test program in RAM.

TAS - This tests the Test and Set operation.

Brief Parity - This tests the parity checking ability on longwords.

Extended Parity - This tests the parity checking ability on bytes.

MMU Tests

Root Pointer Register - This tests the root pointer register with a marching bit

test.

Translation Control Register - This tests the translation control register by

clearing and then setting the Initial Shift field.

Super Prog Space - This test enables the MMU and initiates a table access in

supervisor program space.

Super_Data Space - This tests enables the MMU and initiates an access in su-

pervisor data space.

Write/Mapped-Read Pages This tests the ability of the MMU to read data

which had been written while the MMU was disabled.
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Read Mapped ROM - This tests _me of the upper MMU address lines by at-

tempting to access ROM, _

Fully Filled ATC - This tests the _drcss translation cache by verifying that all

entries in the translation cache can hold a page descriptor.

User_Prog Space - This tests thefunction code signal lines into the MMU by

accessing user program space.

User_Data Space - This tests the function code signal lines into the MMU by

accessing user data space.

Indirect Page - This tests the ability of the MMU to handle an indirect descrip-

tor.

Page-Desc Used-Bit - This tests the ability of the MMU to set the Used bit in a

page descriptor when the page is accessed.

Page-I_sc Modify-Bit - This tests the ability of the MMU to set the Modify bit

in a page descriptor when the page is written.

Segment-Desc Used-Bit - This tests the ability of the MMU to set the Used bit

in a segment descriptor when the corresponding segment is accessed.

Invalid Page - This tests the ability of the MMU to detect an invalid page and

generate a bus error when access is attempted to that page.

Invalid Segment - This tests the ability of the MMU to detect an invalid seg-

ment and generate a bus error when access is attempted to that segment.

Write-Protect Page - This tests the page write protect mechanism in the MMU.

Write-Protect Segment - This te_ts the segment write protect mechanism in the

MMU.

Upper-Limit Violation - This tests the capability of the MMU to detect when a

logical address exceeds the upper limit of a segment.

Lower-Limit Violation - This te_s the capability of the MMU to detect when a

logical address exceeds the lower limit of a segment.

Prefetch on Invalid-Page Boundary - This tests determines if the MC68030

rightfully ignores a bus error that occurs as a result of a prefetch into an

invalid page.

Modify-Bit and Index - This tests the capability of the MMU to set the Modify

bit in a page descriptor of a page which has an index field greater than 0

when the page is written.

Sixteen-Bit User-Program Space - This tests the capability of the MMU to ac-

cess user program space in 16-bit mode.

Sixteen-Bit Page-Desc Modify-Bit - This tests the ability of the MMU to set

the Modify bit in a page descriptor when the page is written in 16-bit

mode.

Sixteen-Bit Indirect Page - This tests the ability of the MMU to handle an indi-

rect descriptor in 16-bit mode.



RMW Cycle - This test performs the Test-and-Set instruction in 3 modes to

verify that the MMU functions correctly during read/modify/write cycles.

5.6.6.1.1.5. I/O Tests

Ethernet LANCE Chip - This performs an initialization and both internal and

external loopback tests on the local area network components.

Z8530 Serial I/O Chip - This tests the functionality of the Z8530 chips for se-

rial transmission and reception.

Interval & Watchdog Timers - This tests the functionality of the interval and

watchdog timers.

DMA Controller - This tests the functionality of the DMA device registers.

Power Fail & Bus Error Interrupt Enables - This test writes and reads the AC

fail interrupt control and Bus error interrupt control registers.

VMEBus Interface - This tests the VME gate array registers by reading and

writing from the local processor bus.

5.6.6.1.1.6. Mis_;ellarlgous Tests

Real-Time Clock/BBRAM Test - This tests the real time clock functionality

and the battery backed-up RAM.

Bus Timz'out Error Test - This tests the local bus time-out and global bus time-

out error conditions.

Floating Point Coprocessor Test - This tests the functionality of the floating

point coprocessor.

5.6.6.1.2. Network Element Self Tests

The following tests are executed by a processor communicating with the tested

Network Element via the FCR backplane bus. These tests exercise various components of

the network element:

5.6.6.1.2.1. Processor-Network Element Interface

Dual port RAM - This tests the ability of the Dual port RAM to be written to

and read from the processor.

Ring buffer management - This tests the activation of packet transfers and tests

the ability of the Ring Buffer Manager to access the proper input and out-

put ring buffers and to check the proper assertion of Output Buffer Full

(OBF) and Input Buffer Empty (IBE).

Packet receive interrupt - This tests the functionality of this interrupt mecha-

nism.
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5.6.6.1.2.2.

5.6.6.1.2.3.

_6.6.1.2.4.

5,6,6.1.2,5.

_6.6.1.2.6.

5.6.6.1.2.7.

Network Element Data Paths

Class 1 data path FIFO test - This tests the functionality of the data paths

through the data path FIFOs using the voting rules for class 1 exchanges.

Class 2 data path FIFO test - _is tests the functionality of the data paths

through the data path FIFOs using the voting rules for class 2 exchanges.

Voter error detection capability - This tests the error detection capability of the

voter.

Message reflection multiplexer - This tests the special data paths involved in

source congruent exchanges.

Network Element Global Controller

Global controller - This tests the functionality of the global controller.

ISYNC test - This tests the ability of the global controller to achieve synchro-

nization with the other channels using the debug wrap mode.

Transient NE recovery test - This tests the ability of the global controller to

resynchronize with the other channels and update the configuration table.

Scorekxx_

Message class test - This tests the operation of the scoreboard in sending pack-

ets of every 'allowable class.

Configuration Table Updates - This tests the ability to regenerate the system

configuration and to reseta!! timeouts.

OBNE Timeout detection - This tests the detection of the OBNE condition and

the generation of the OBNE timeout syndromel

IBNF Timeout detection - Thistests the detection of the IBNF condition and

the generation of the IBNF timeout syndrome.

Scoreboard vote error detection- This tests the detection of a scoreboard vote

condition and the generation of the scoreboard vote syndrome.

Inter-Fault Set Communication Links

Optical data links and TAXIs-This tests the correct operation of the devices

used in the optical communication network.

Voted Reset

Voted reset - This tests the ability to detect a system reset sent by a majority of

other Network Elements and to issue a system reset of its own FCR.

Fault Tolerant Clock
.....r....

Fault tolerant clock - This tests the ability to detect a self-ahead or self-behind

condition and to compensate correctly for this clock skew.

Page 5-45



5.6.6.1.3. FCR Backplane Bus Self Tests

The FCR backplane bus will be tested using a standardized suite of self tests to exercise

such functions as bus arbitration, bus master control, etc.

5.6.6.1.4. Input/Output Device Self Tests

Input/Output devices may range from a simple "dumb" I/O device to an intelligent de-

vice which behaves as a processor. In the former case, a processor on the FCR backplane

bus will exercise a suite of tests to evaluate its functionality; in the latter case, the I/O device

itself may be capable of executing processor-like self tests.

The tests to exercise the I/O device functions will be determined as I/O devices are

identified in subsequent phases of the AFTA program.

5.6.6.1.5. Power Conditioner Self Tests

The power conditioners in each fault containment region will be nominally tested via the

on-board set of tests of an intelligent power conditioner.

5.6.6.1.6. Mass Memory Self Tests

The mass memory device is a memory unit with error detection and correction capabil-

ity consisting of both non-volatile RAM and ROM. It is accessible by all components in

the fault containment region via the FCR backplane bus.

The mass memory devices in each fault containment region will be nominally tested via

a suite of tests intended to ensure that the memory contents are correct and that the memory

addressability is operating properly. In fact, the same memory tests described for the pro-

cessor on-board memory may be executable on the processor but access the mass memory

device if the mass memory exhibits the appropriate characteristics (for example, support for

parity). Consequently, the mass memory tests would include the marching address,

marching one, refresh, random byte, test-and-set, brief parity and extended parity tests.

5.6.6.1.7. System Tests

The tests discussed previously exercise the functionality of the individual line replace-

able modules. Conversely, the system tests exercise functions requiring multiple compo-

nents operating in tandem to effectively test the system. Because the AFTA is designed as

a fault tolerant system, fault detection mechanisms are built into the specially designed in-

terconnection network and are exercised at every message exchange to provide high cover-

age of faults with low fault latency. The goal of the system self tests is to test the AFTA as

an operating entity exercising these fault tolerant mechanisms.
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Fault tolerance in the AFTA is implemented using hardware redundancy. A specially

designed set of Network Elements operate in tight synchrony to implement fault tolerant

message exchanges among processors grouped into redundant virtual groups. The con-

stituent processors in a virtual group communicate with the members of its virtual group

and with other virtual groups by synchrono0sly sending messages via the network ele-

ments. The Network Elements perform fault tolerant specific operations on messages and

deliver voted messages to all members of the destination virtual group. The voting process

generates a consistent voted copy of the message as well as error syndrome data which are

reported with the delivered message. This error syndrome information can be used to iden-

tify faulty components.

A number of tests can be constructed based upon these fault tolerant capabilities as well

as upon the characteristics of the operating environment:

1) The presence test is a means of polling various components to determine if each is

active and synchronized. Within the AFTA the presence tests can be employed at 2 levels

of abstraction: presence test on members of a virtual group (intra-virtual group) and pres-

ence tests on each virtual group in the AFTA (inter-virtual group). The failure of either

type of presence test implies that the tested entity is not synchronized.

2) The error syndrome data described in Section 4 indicates the Network Element de-

tected an erroneous condition. The analysis of this syndrome data can identify either a pro-

cessor or a Network Element as faulty.

3) Because a voted exchange of information generates a consistent message, the voted

message mechanism can be used create a consistent voted copy of memory. In this test

(called RAM scrub) the contents of RAM locations known to have congruent data are com-

pared across all channels by voting the contents of memory. If there is a discrepancy, the

fault is logged and the correct value is written t° the faulty RAM location.

4) In the PROM check test the contents of PROM are verified by summing all loca-

tions and comparing the results against a voted value.

5) The voter test will test the Network Element voting mechanism by seeding non-con-

gruent values selectively on each channel of a fault masking group. Not only does this test

the composite data but also the syndrome generation.

6) The class test will test the Netw9rk Element voting mechanism by requesting a non-

congruent message exchange class selectively on each channel of a fault masking group.

This tests the SERP processing and the tim¢out syndrome generation.
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7) The Network Element presence test checks the status of each Network Element.

Specifically, it determines the synchronization of all Network Elements. This test is used

only during the I-BIT mode to determine the initial system configuration.

8) In order to overcome possible software or hardware errors which disable the sys-
÷

tem the watch dog timer is implemented. A timer is periodically reset by software at regular

intervals. This timer is decremented periodically by an interrupt process. A timer decre-

mented to 0 is indicative of an error since the timer had not been reset with the predefined

time.

9) Exception handlers are provided to handle undesirable events such as a divide by

zero exception, an illegal instruction or an overflow. In some cases these events are ex-

pected by an application and the application should provide a means to account for this sit-

uation. However, for those unforeseen situations where a fault causes the trap invocation,

a handler will be provided which will initiate remedial action to recover from the fault.

5.6.6.2. Ooerational Constraints of Fault Detection Mechanisms

During each system mode the time constraints, the requirements on maintenance of

mission critical information and even the system configuration differ. Consequently, the

tests executed during each of the test modes vary based upon these factors. Because the

power on sequence describes the transitions among these operational environments, a brief

description of the power on sequence with the emphasis on testing follows (refer to Figure

5-31):

1) Upon initiation of power or manual system reset, the AFTA system is essentially

established in an initial, unsynchronized state where each component is operating indepen-

dently. While in this unsynchronized state, the primary emphasis is to execute as many

device self tests as possible. The processors test themselves; subsequently, a single pro-

cessor is selected which exercises I-BIT self tests of the FCR backplane bus, the Network

Element, power conditioner, mass memory and I/O devices.

2) The initial synchronization of the Network Elements is a process whereby the net-

work elements synchronize and commence fault tolerant message exchanges. Each net-

work element, operating independently, can be directed to synchronize upon direction of a

processor within the fault containment region or by its own global controller. Subsequent

to the initial synchronization, the processors (now members of virtual groups) are capable

of performing fault tolerant message exchanges with each other. When the initial synchro-

nization phase terminates a system configuration has been established. This configuration

will consist of fault masking virtual groups commensurate with the minimum dispatch

complement.
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3) After the initial synchronization,asingleredundantvirtual groupwill assumethe
taskasthesystemmanager.Thissystemmanagervirtual groupwill requestthatall virtual
groups(whethersimplex,triplex, orquadruplex)transfertheirdiagnostictestresultsto the
system manager. The system manager evaluates the results and reconfigures those redun-

dant virtual groups which contain a faulty component with the intent of achieving the mini-

mum dispatch complement for computing resources at the required reliability level.

4) After the redundant system configuration has been established, the system manager

commands each virtual group to initiate the real-time scheduler and to commence the system

tests. The minimal set of I-BIT system tests will be exercised.

5) When it has been determined that the minimum dispatch complement for the current

mission has been established, the AFTA system will be established in a state referred to as

"operational standby". During this state thecomprehensive suite of M-BIT system tests

will be exercised until the mission is activated.

6) When the mission is activated, the System is established in the "mission critical"

mode where the C-BIT tests are executed concurrent with the mission functions. As indi-

cated in Figure 5-31, the AFTA operating system prevents execution of any BIT other then

C-BIT until a reliable indication is given that the mission is over and it is safe to enter other

diagnostic modes. This could be a composite indication from mutually corroborative

sources such as the weight-on-wheels switch, rotor RPM, vehicle INS and rate gyro sys-

tem, propulsion status, and pilot discrete(s).

7) Alternatively, from the standby state an operator may command the M-BIT se-

quence of tests which execute similar to the I-BIT tests.
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Figure5-31. TestModeSequences

5.6.6.2.1. I-BIT Mode Self Tests

The I-BIT test mode is automatically initiated when power is applied to all AFTA com-

ponents. However, the I-BIT test mode is constrained by a requirement that this mode be

active for only seconds. Presumably, shortly after initiation, it is desirable that the vehicle
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bemission ready. Because of this time limitation only a subset of the self tests employed in

the M-BIT mode shall be executed. The emphasis in the sele, ction of I-BIT tests is primar-

ily to exercise the functionality of all LRMs in the AFTA and secondly to test those compo-

nents as comprehensively as time permits.

The component tests will be sequenced such that components deemed to be non-faulty

will exercise subsequently tested components. This methodology requires that the initial

component test itself. Although it cannot beguaranteed that a faulty initial component will

correctly conclude its own health, subsequent system testing can detect faulty behavior and

that faulty component will be eliminated.

During the non-fault tolerant operational mode, the AFTA components are not syn-

chronized or operating as a fault tolerant computer. Consequently, there is no critical in-

formation which must be maintained aside _om test results and there are no synchroniza-

tion constraints. The tests can destructivelychange memory locations on the processors,

test the Network Elements in a debug wrapback mode, or change the bus master on the

FCR backplane bus. In addition, since the real-time operations have not commenced, the

scheduling constraints are relaxed .............

5.6.6.2.2. M-BIT Mode Self Tests

The M-BIT test mode is initiated by an operator in an operational environment with the

expressed purpose of extensively testing all components of the AFTA. Because of the lack

of a severe time constraint, the suite of tests could conceivably be the identical set as that

executed in the depot test mode. However, there are two primary differences between

these test modes - the operator interface and the automation of the test sequence. The site

of the M-BIT execution is on-board a hosting vehicle which naturally, implies that the op-

erator is either the vehicle operator or a line maintenance crew. In addition, the M-BIT tests

exercise all components of the AFTA as a_automated sequence. In contrast, the depot

tests are conducted at a remote repair facility by a repair technician exercising a set of tests

on a single LRM.

The other operational constraints are the same as those of the I-BIT test mode.

5.6.6.2.3. 1-BIT Mode System Tests

The I-BIT test mode is a bridge between a system reset condition and a fault tolerant

operational state. Because the time constraint to transition from an initial state to a fully op-

erational environment (that is, operational standby), is so severe, only a minimal set of the

system tests is executed. In fact, only an NE presence test is incorporated during this mode

to ensure that all Network Elements are operational and synchronized.
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5.6.6.2.4. M-BIT Mode System Tests

Because of the lack of a severe time constraint (as with the I-BIT) the suite of tests

which can comprise the M-BIT test mode can be very extensive. However, as currently

envisioned, the M-BIT system tests will comprise the same suite of tests as the C-BIT.

5.6.6.2.5. C-BIT Mode Tests

During the C-BIT mode the AFFA is operating in a state where: 1) real-time scheduling

is enforced, 2) mission critical operations occur and 3) redundant virtual groups exist.

These constraints require that the tests enacted during this mode be unobtrusive.

During the C-BIT mode, the AFTA system performs mission critical tasks within the

confines of a real-time scheduler. These constraints pose two requirements for C-BIT

testing - 1) information must be preserved and 2) the operation of these tests must be unob-

trusive. Consequently, a minimum of computing resources must be consumed in the ana-

lyzing the inherent fault detection mechanisms and data integrity must be maintained.

Any device self test implemented as a C-BIT must ensure that it does not modify the

mode of operation of any AFTA component in an unrecoverable way. Examples include

tests which change ',he processor status register or activate the memory management unit,

tests which cause the Network Elements to desynchronize, or tests which alter bus arbitra-

tion on the FCR backplane bus. Because of the operational requirements of the system and

because on-board diagnostics typically do not preserve system state, many of the manufac-

turer supplied set of tests are inoperable in a real-time operational environment. For in-

stance, memory tests typically modify, read, and check memory locations without preserv-

ing the information. Therefore, the implementation of the self tests for the C-BIT mode

will be different than those for the other test modes.

In addition, because the system configuration could conceivably be a mixed redundancy

system consisting not only of fault masking groups but of simplexes as well, the system

tests must ensure that all virtual groups are active and that all are operating properly.

___Ma.o.oing of Fault Detection Mechanisms to Test Modes

Because the goal of the AFTA design is to create a digital computing system of the

highest possible fault coverage, it is imperative that a comprehensive set of tests be exe-

cuted during all test modes. Since the time constraints and system configuration vary for

each test mode, the suite of tests for each test mode will differ. In fact, the suite of tests

will be a composite of both the self tests and the system tests whenever practical. For in-

stance, it is impossible to execute a system test when the hardware is operating in non-fault

tolerant mode. On the other hand, a self test may require altering some datum (for exam-
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pie, a status register) which allows for the possibility of a catastrophic change of state

which jeopardizes mission critical information i

The following series of tables delineate the AFTA tests. Because some tests are exe-

cutable only in either one of the operational modes whereas others earl be executed in both

modes, the individual tests are marked for each test mode as follows:

test is executable in non-fault tolerant mode only

2 test is executable in faul t tolerant mode only

3 test is executable in both modes

For those tests which are executable in both modes the actual implementations of the

test could be different although they functionally perform the same operations.

5.6.6.3.1. Processor Self Tests

CPU Tests:

Register

Instruction Set

Addressing Modes

Exception Processing

depot

1

1

1

1

I-BIT M-BIT C-BIT

3

3

3

1

Cache Tests:

Basic Data Caching

D Cache Tag RAM

D Cache Data RAM

D Cache Valid Flags

D Cache Burst Fill

Basic Instruction Caching

Unlike Instruction Function Codes

I Cache Disable

I Cache Invalidate

depot

1

I

1

1

1

1

1

1

1

I-BIT IM-BIT C-BIT

Memory Tests:

Marching Address

Marching One

Refresh

Random Byte

i i,,i rl

I-BIT M-BIT C-BITdepot

1

1

1

1

3

3

1 3
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I Program

TAS

BriefParity

Extended Parity,,,

MMU Tests:
i.

Root Pointer Register

Translation Control Register

Super_Prog Space

Super_Data Space

Write/Mapped-Read

Read Mapped ROM

Fully Filled ATC

User_Prog Space

User_Data Space

Indirect Page

Page-Desc Used-Bit

Page-Desc Modify-Bit

Segment-Desc Used-Bit

Invalid Page

Invalid Segment

Write-Protect Page

Write-Protect Segment

Upper-Limit Violation

Lower-Limit Violation

Prefetch on Invalid-Page Boundary

Modify-Bit and Index

Sixteen-Bit User-program Space

Sixteen-Bit Page-Desc Modify-Bit

Sixteen-Bit Indirect Page

RMW Cycle

depot

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I

1

1

I-BIT

1

1

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

I

1

1

M-BIT C-BIT

1

1

1

I/O Tests:
i

Ethemet LANCE Chip

Z8530 SIO Chip

Interval & Watchdog Timers

DMA Controller

depot

1

1

1

1

I-BIT C-BIT
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PowerFail & Bus Error Interrupt Enables_

/VMEBus Interface 1 . 1

Miscellaneous Tests:

Real-Time Clock/BBRAM Test

Bus Timeout Error Test

Floating Point Coprocessor Test

5.6.6.3.2. Network Element Self Tests

Processor-Network element interface:

Dual port RAM

Ring buffer management

Packet receive interrupt

depot

1

1

1

I-BIT M-BIT

1

1

3

C-BIT

°depot

1

I

1

I-BIT M-BIT C-BIT

Network element data paths:

Class 1 data path FIFO test

Class 2 data path FIFO test

Voter error detection capability

Message reflection multiplexer

,_dep °t

1

1

1

1

I-BIT M-BIT C-BIT

Network element global controller:

Global controller

ISYNC test

Transient NE recovery test

depot

1

1

1

I-BIT

1

1

1

M-BIT C-BIT

Scoreboard:

Message class test

Configuration table updates

OBNE timeout detection

IBNE timeout detection

Scoreboard vote error detection

depot

1

1

1

1

1

I-BIT M-BIT C-BIT

1

1

1

1

1

Inter-fault set communication links: I-BIT M-BIT C-BIT

Optical data links and TAXIs

depot

1
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Votedreset: depot
1

I-BIT M-BIT C-BIT

Voted reset 1

i
.Fault tolerant clock: , depot

Fault tolerant clock 1

I-BIT

I

i -- 1,, i1|

M-BIT C-BIT
i

1

5.6.6.3.3. FCR Backplane Bus Self Tests

depot

TBD 1

TBD 1

TBD 1

I-BIT M-BIT C-BIT

5.6.6.3.4. Input/Output Device Self Tests

,i

TBD

TBD

TBD

5.6.6.3.5. Power Conditioner Self Tests

depot

1

1

1

I-BIT

1

1

1

M-BIT

3

3

3

C-BIT

3

3

3

TBD

TBD

TBD

5.6.6.3.6. Mass Memory Self Tests

depot

1

1

1

I-BIT

1

1

1

M-BIT C-BIT

Memory Tests:

Marching Address

Marching One

Refresh

Random Byte

TAS

Brief Parity

Extended Parity

depot

I

1

1

1

1

1

1

I-BIT

1 3

1 3

1

1 3

1 3

1 1

1 1

M-BIT C-BIT

3

3

3

3
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5.6.6.3.7. System Tests

Intra-virtual group presence test

' Inter-virtual group presence test

Syndrome analysis

RAM scrub

PROM check

Voter test

Class test

NE presence test

Watchdog timer

Exception handlers

depot M-BIT C-BITI-BIT

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

5.6.7. Fault Diagnosis

During both non-fault tolerant and fault tolerant operations the AFTA system performs

various levels of testing commensurate with _e operational constraints. Because of the op-

erational environment and the ultimate goal of comprehensively testing the AFTA during all

operations, the tasks of testing and result analysis is divided among the three FDIR func-

tions - Off-Line FDIR, Local FDIR and System FDIR. This section describes the overall

methodology used by each task and the self and system tests implemented by each.

5.6.7.I. Non-Fault Tolerant O.ocratia_

During the non-fault tolerant mode the emphasis is on ensuring that the constituent

components of the AFTA are operating correctly. This is accomplished by exercising

functional components of each LRM in the_A with a series of diagnostic level tests.

Off-Line FDIR is initiated when the system is reset at which time the AFTA compo-

nents are operating independently. In other words, the Network Elements are not synchro-

nized, the processors act as individual processors rather than as members of a virtual group

and the I/O devices are in an initial state.
!!

Off-Line FDIR systematically sequences through a series of diagnostic level self tests to

exercise all AFTA components. There are 2 distinct series of tests corresponding to the I-

BIT and M-BIT modes. These sets were necessitated because of the constraints regarding
iiiiii

the amount of time allotted to perform testing in these modes. The enumeration of the tests

comprising each test mode can be deduced from the tables in the fault detection mechanisms

section.
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Procedurally, Off-line FDIR initiates a series of self tests of each processor in the sys-

tem. As each processor completes its suite of tests and is determined to be non-faulty, it

claims an area of the dual ported RAM as its interface with the Network Element. (Section

4 describes the memory map and the functions of this RAM.) The first non-faulty proces-

sor in each fault containment region shall be responsible for testing the network element,

FCR backplane bus, power conditioner, mass memory, and I/O devices. All fault infor-

mation will be saved by each processor in the FCR's non-volatile mass memory for later

dissemination.
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Figure 5-32. Off-Line FDI Overview
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Off-Line FDIR uses the device self tests exclusively for diagnosis of faulty compo-

nents. Because these tests directly exercise the functionality of LRMs the diagnosis of a

specific LRM as faulty is obviously trivial. However, since the self tests exercise the func-

tionality of an LRM, the failure of a test identifies not only the failed LRM but also the

failed LRM function which maps to a chip or set of chips. This chip level diagnostic in-

formation is retained for dissemination to a maintenance crew.

5.6.7.2. Fault Tolerant O, erations

When the AFTA system hardware is operating synchronously with fault tolerant mes-

sage exchanges, it is capable of exercising the system tests which employ the inherent fault

detection mechanisms to provide fault tolerance. In addition, the system is also capable of

executing some of the self tests. Because of the requirement to execute unobtrusively dur-

ing fault tolerant operations, only a subset of the entire suite of self tests can be executed.

In particular, only some of the processor self tests can be performed.

Although all test modes execute system tests, only the M-BIT and C-BIT modes utilize

the full capabilities of these tests. The system test capability of the I-BIT is minimal.

During fault tolerant operations the duties of fault detection, isolation and recovery are

shared between local FDIR and system FDIR. Local FDIR executes on each virtual group

and is able to diagnose faults in the constituent processors of that virtual group. System

FDIR, on the other hand, executes on a single fault masking group; it diagnoses failures in

all other AFTA components.

5.6.7.2.1. Local Fault Detection and Isolation

Each redundant fault masking virtual group executes the intra-virtual group presence

test, syndrome analysis, RAM scrub, PROM check, watch dog timer, and provides excep-

tion handlers for certain unusual conditions. Of these tests the intra-virtual group presence

test and the syndrome analysis are invoked on an iterative basis to check for an unsyn-

chronized channel, a failure in the Network Element hardware, and processor failures.

This synchronous test methodology is depicted in Figure 5-33.
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AlthoughthelocalFDI candetect failures in components other than the constituent pro-

cessors of its virtual group, it is responsible only for the diagnosis and disabling of its

member processors. Other component failures such as failures in a Network Element fail-

ure or an !/O device are analyzed and disabled by system FDI.

When a processor is identified as being faulty, local FDI disables the faulty processor

so that it does not adversely affect operation. Specifically, FDI disables the voted outputs

from the faulty processor, reports the failure to the FDI system manager and initiates the

selected recovery option.

5.6.7.2.1.1. lntra Virtual Group Presence Test

An unsynchronized processor is detected by means of the intra-virtual group presence

test. This test detects an unsynchronized processor by sending a unique pattern from each

member of the virtual group via source congruent message exchanges through the network.

If the result received is not the expected pattern, the processor originating the exchange is

judged not present and, therefore, desynchronized from the other channels. When the syn-

chronized channels detect the loss of synchronization of a processor, the synchronized

members of the virtual group disable the faulty channel.

•_(Z,2,._] .2L_._. Syndrom_ Analysis

Failures in the processors of a virtual group or Network Elements are detected by ana-

lyzing the error syndrome delivered with message packets by the Network Element hard-

ware. The error syndrome defines both vote errors and link errors generated during han-

dling of the packet by the Network Elements. Vote syndrome are generated during a mes-

sage exchange if a miscompare is detected by the Network Element hardware during the

voting of data received from the redundant channels. Link errors are generated if the re-

ceiver fails to detect the transmitter/receiver synchronization pattern. Since the error syn-

drome is delivered with the message exchanges, the message handling primitives extract

this information on a message class basis for analysis by FDI.

The Network Element generates the syndrome just prior to delivery of the message to

the processor. Therefore, the syndrome data are non-congruent with the other members of

its virtual group. In order to prevent divergence of the synchronous channels which must

operate on identical inputs to maintain synchrony, the channels must participate in a series

of source congruent exchanges of this syndrome data. Upon completion of the syndrome

exchange process, each channel has a copy of all channels' syndrome data.

The syndrome analysis identifies a fault in either (1) a Network Element (including the

transmitter-to-receiver link), or (2) a processor which generated incorrect voted data. The

analysis occurs in a 3 step process:
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1) Analyzethevote syndrome,

2) Analyze the link syndrome, and

3) Correlate vote and link results to identify a faulty component.

The vote syndrome analysis compares the pattern across channels for each message

class with known fault patterns. In each case a hypothesis testing methodology is used

where a channel is assumed faulty, that channel is masked out and the resultant pattern

compared with the known pattern, This analysis results in the indication of a faulty proces-

sor associated with a message class.

The link syndrome analysis identifies either a transmitter or receiver as faulty. How-

ever, rather than analyzing all channel's syndrome against a specific pattern, each channel's

link syndrome is analyzed individually. Essentially, each analysis generates 2 hypotheses

- one indicative of the transmitter indicat_,_ the syndrome and the other representing the

detecting channel's receiver. The subsequent count of the errors detected verify either one

of these hypotheses. Multiple channels detecting the same link error indicates a transmitter

fault; a single channel detecting the link error implies the receiver fault.

Because link faults can generate vote errors, it is important to identify the source of a

vote error. In the absence of other error syndromes, processor faults are identified as vote

errors on voted messages. Any combination of errors which includes a link error are at-

tributable to either a transmitter or receiye_fault in the appropriate Network Element.

Although Network Element errors may manifest themselves as a vote syndrome on either

voted messages or source congruent errors, the diagnosis of a Network Element fault is

identified as a vote error on a source congruent message.

The syndrome data analyzed by a virtual group is that data delivered with messages

which the virtual group addressed to itself. Consequently, the members of a virtual group

diagnose its constituent processors. The virtual group also disables its own faulty proces-

sor. Although a redundant virtual group can also diagnose Network Elements as faulty, it

merely reports these diagnoses to a system FDI function which performs further analysis

and, if necessary, Network Element recovery.

5.6.7.2.1.3. Self Tests

Because the AFTA is designed to withstand a specific number of simultaneous faults, it

is imperative that the number of faults be c0n_ned to a minimum. Exceeding the number of

simultaneous faults could result in total Sy_em failure. For this reason, background self

tests were devised to minimize the possibility of simultaneous failures by checking for la-

tent faults in the AFTA processors. Whena faulty component is uncovered, that compo-
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nentcanbeeliminatedfrom thesystemconfigurationthereby,reducing the likelihood of

simultaneous faults.

While the majority of the system tests are effective for the identification of processor

faults in fault masking groups, the testing (and subsequent diagnosis) of simplex virtual

groups is primarily provided by self tests.

The background self tests exercise processor components and comprise a comprehen-

sive as is feasible set of tests which are executed as low frequency background tests.

These tests include memory tests (for example, RAM pattern tests) and CPU tests (register,

instruction, addressing modes).

Failures detected using these tests will adhere to the transient fault analysis and recov-

ery policies defined in a subsequent section.

5.6.7.2.2. System Fault Detection and Isolation

System FDI is responsible for the coordination of system status and fault information

as well as for testing and analysis of shared components. Specifically, system FDI will be

responsible for

1) maintaining the current status of every system component,

2) initiating Network Element tests and analyzing test results,

3) initiating I/O device tests and analyzing test results,

4) evaluating the fault diagnosis information of other fault masking groups with regard

to Network Element failures, and

5) analyzing syndrome data indicative of Byzantine faults, and

6) collecting and reporting of fault information logged in the mass memory devices in

each fault containment region.

System FDI will evaluate the status of every system component by executing the inter-

virtual group presence test as well as by accepting update status from each system compo-

nent indicating the faulty component. The inter-virtual group presence test is essentially a

poll of all virtual groups within the system. Failure of a virtual group to respond to the

message within a specific time period is indicative of a fault. This is especially important

for the analysis of simplex processors which may have failed without communicating that

information to the system manager.
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The system Network Element tests incl_e a voter test and a class test. Each of these

tests exercises the Network Element by seeding either non-congruent data or non-congruent

class information into the Network Element_ This testing will systematically exercise each

Network Element. However, because the AFTA system configuration could consist of up

to 5 Network Elements whereas the system manager fault masking group may consist of a

maximum of 4 members, the system manager itself is incapable of testing all network ele-

ments. Instead, it may assign some portion of the test task to another fault masking group.

Although the local FDI functions can detect and identify a Network Element failure, it

cannot formally diagnose a Network Element_as faulty. This information is sent to the sys-

tem FDI which may perform additional analysis and actually perform some remedial action.

There may be situations where the syndrome information maintained by the local FDI

on a virtual group is inconsistent. Either all_mbers of the virtual group do not concur on

the identification of a component or not all members agree that a fault even exists. This

type of syndrome information is indicativeof a Byzantine fault where the faulty component

maliciously communicates some informati0_to a fault containment region and some other

data to another fault containment region. Faults of this type would generally be indicative

of a faulty Network Element and, hence, must be handled by the system FDI.

5.6.8. Recovery. options

When a component has been diagnosed as faulty it will be disabled. The network ele-

ment hardware has masking capabilities to mask a failed component. For instance, there is

a processor mask which can disable a fau!ty processor's participation in a voted message

exchange. Furthermore, a faulted processor Can be excluded from a virtual group thereby

preventing it from communicating with other virtual groups. In addition, a network ele-

ment can be masked causing the other Network Elements to ignore data and clock signals

from the disabled Network Element. Although these masking capabilities can prevent a

faulty component from corrupting information in the other fault containment regions, it is

desirable to inhibit the faulty component from affecting other components which share the

FCR backplane bus. For this reason the component will be disabled from both a compo-

nent and a system perspective.

The response to failure section defines the actions of the individual components to limit

faulty behavior to the most confining failure envelope. The subsequent section describes

from the system perspective the methods tO recover from a component failure while effi-

ciently utilizing system resources.
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5.6.8.1L Response to Failure of Test

When a component fails it is highly desirable to contain the faulty behavior to the small-

est possible extent. Although this faulty behavior is contained within the FCR boundaries,

the component could corrupt other devices which share the same FCR backplane bus. The

following actions attempt to reduce the failure envelope to include only that device itself.

Failure to adequately limit the damage by use of these measures will ultimately lead to the

failure of the FCR which is unavoidable under these circumstances.

1) Processor - During non-fault tolerant operations a processor may be able to detect

itself as faulty. The processor will attempt to log the failure in a mass memory device and

to disable itself by executing a reset. During fault tolerant operations the processor itself

may diagnose itself as faulty via a processor self test; it may reset itself. Alternatively, the

virtual group may diagnose the fault. Depending upon the system recovery strategy and the

transient analysis policy the virtual group may generate a voted reset.

2) Network element - If a Network Element exhibits faulty behavior, the only reme-

dial action the testing processor can perform during non-fault tolerant operations is to issue

a Network Element reset to prevent that Network Element from initially synchronizing with

the other Network Elements. During fault tolerant operations, the system manager virtual

group which diagnoses Network Element failures may permanently disable the faulty net-

work elements via the Network Element mask and may perform a voted reset.

3) llO device - If an I]O device is declared faulty during non-fault tolerant operations,

the testing processor can reset that device and log the fault in the mass memory. The moni-

tor interlock is asserted to disable that I/O device (Refer to Section 4). Although the I/O

device may be reset and disabled via a monitor interlock during fault tolerant operation, the

specific mechanisms have yet to be defined.

4) FCR backplane bus - Since all communication between the Network Element and

the attached devices (that is, processors, I/O devices, mass memory) occurs via the FCR

backplane bus the only appropriate response to a FCR backplane bus failure is to reset the

Network Element. Masking the Network Element disables the faulty component totally.

A failure of the FCR backplane bus during fault tolerant mode would be attributable to ei-

ther a processor or a Network Element because the bus is not directly tested by any test in

this mode. Nonetheless, those components exhibiting the faulty behavior will be identified

and disabled via a reset.

5) Power conditioner - Because a power conditioner regulates the voltage to the en-

tire fault containment region, its failure could generate spurious signals to any component

within the fault containment region. Failure to adequately mask this failure could result in
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later system failure. Consequently, in order to prevent the possibility of a system failure it

is imperative that the Network Element be reset and that Network Element be masked.

6) Mass memory - Because the mass memory device is a somewhat passive compo-

nent, the manner in which it is disabled depends upon the nature of the fault. If a memory

location is faulty as in a "stuck-at-one" condition, than the mass memory device can be ig-

nored or the faulty locations bypassed. However, if the FCR backplane interface with the

mass memory device is inoperative, the mass memory could disrupt communications

across this bus and would require disabling the entire fault containment region via a net-

work element reset.

5.6.8.2. SystemRecovery

During fault tolerant operations the system tests and the processor self tests may indi-

cate a component as failed. At that time some remedial action must be taken in order to re-

move that faulty component from the operational system. Because of the dynamic recon-

figurability of the AFTA architecture many recovery options are possible ranging from

merely masking the faulty component such as a Network Element to integration of a spare

processor as a replacement for a faulted onel These recovery actions are different for each

type of failed component (that is, processor, network element, or I/O device). Further-

more, when recovery from a failure is initiate, the current system mode is an important

factor because it defines the time constraintsfor execution of a recovery strategy.

As the recovery strategies are discussed the operational requirements of each strategy

are addressed. These constraints may or may not be commensurate with the operational re-

quirements of the mission critical environment. Hence, an appropriate recovery strategy

should be selected based upon the mission and its system mode. Figure 5-34 depicts rather

qualitatively the appropriateness of a recove_ methodology given the system mode (that is,

power-on, standby or operational).
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Figure 5-34. Qualitative evaluation of recovery methods

There are two primary criteria for the selection of a recovery option - 1) the operational

environment of the system when the fault was uncovered and 2) the type of faulty compo-

nent. The operational environment criterion defines the system mode of operation and is

indicative of the system constraints. These constraints may require that the ieconfiguration

process complete within a minor frame (for example, 10ms) or that the recovery time can

be significantly greater. They may also require that mission critical information be main-

tained. Obviously, the recovery option is also contingent upon the type of failed compo-
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nent. A reconfigurationpolicy to recover a failed processor is drastically different than that

of a failed Network Element.

These recovery options are oriented at system goals as a means of dealing with a failure

in a component. Some of the recovery options attempt to reintegrate the failed component

to determine if the fault was transient. Other_covery options discard the failed component

without an attempt to "recover" the diagnosed component.

The options discussed recover the system from failures in processors and network ele-

ments. The options for recovery from an input/output device fault are the same as those for

processors if the I/0 device has the processor-like functionality to interface to the Network

Element as a member of a redundant virtua! group. The specification of recovery options

for I/O devices will be addressed as I/O devices are selected for incorporation into the

AFTA. .......

5.6.8.2.1. Recovery from Processor Failure

If a processor failed, numerous strategies exist for system recovery. Although it is

highly desirable to recover a channel, it may not always be possible because of mission

critical constraints. For this reason a number of possible recovery options are posed which

have various operating characteristics. Depending upon the mission mode, these character-

istics may make a recovery option feasible tO execute without irreparable harm to the mis-

sion.

L6..E23d_ Graceful Degradation

During mission critical operations a redundant virtual group tests itself using such tests

as the intra-virtual group presence test or syndrome analysis. In the absence of a common

mode fault, the virtual group can correctly deduce that a member has failed and can initiate

corrective action. Specifically, a virtual group can gracefully degrade its redundancy level

by issuing a configuration table update message which eliminates the faulted channel. The

CT update message can reconfigure a redundant group and create a simplex atomically

eliminating the requirement that each virtual group in the system be cognizant of an upcom-

ing system reconfiguration. This has the net effect of initiating and terminating a reconfigu-

ration within a minor frame.

One disadvantage to this alternative is that the redundancy of the virtual group is de-

creased. A quadruply redundant group would degrade to a triplex; a triply redundant vir-

tual group would become a degraded triplex which is essentially a triply redundant group

which has a single channel's voted messages masked out. The faulted channel's data can-
....

not contribute in any voted message. Operating as a degraded triplex is undesirablebe-

cause its performance may be significantly penalized if the faulted channel fails to respond



to messagerequests and timeout penalties are sustained by the degraded triplex. A sim-

plex, of course, cannot be affected by this recovery technique.

5.6.8.2.1.2. Processor ResynchtoniTztion

When a virtual group member is judged to have lost synchronization with the other

channels of its virtual group, the resynchronization recovery strategy attempts to resyn-

chronize that lost channel and reintegrate it in order to maintain the redundancy level of the

virtual group.

A processor which fails the intra-virtual group presence test is deemed to have lost syn-

chronization and attempts to resynchronize itself with the other channels. The failed chan-

nel itself detects the failure, primarily via a watchdog timer mechanism; the synchronized

channels detect the failure when the channel fails to respond to its presence test. When

resynchronization (also referred to as lost channel synchronization) has been achieved, the

state of the failed processor (now resynchronized) must be made congruent with the other

synchronized processors. This is accomplished by an alignment process. This is a process

whereby the machine state of all members of a virtual group become congruent by voting

all congruent memory, registers, and timers.

There are essentially two participants in the resynchronization process - the lost channel

and the synchronized channels. When the lost channel detects loss of synchronization with

the other members, it immediately invokes a lost channel synchronization procedure. The

synchronized channels periodically invoke this procedure when the transient analysis func-

tion deems it appropriate to attempt recovery of a failed channel.

The resynchronization function consists of two control streams - one for the lost chan-

nel and the other for the synchronized channels. These are depicted in Figure 5-35. The

lost channel executes a pickup_sync routine which essentially listens to incoming messages

for the specific pickup message. When it detects this message, the lost channel participates

in the resynchronization presence test. Conversely, the synchronized channels perform a

voted message exchange of the pickup message. Subsequently, these channels execute the

resynchronization presence test which, like the presence test, consists of a series of source

congruent message exchanges. These message exchanges send source specific patterns

which differ from those used in the presence test. For each exchange, a comparison is

made of the pattern received for the given exchange against the pattern expected for a suc-

cessful exchange. A match indicates that the given channel is operating in synchronism

with the channel sourcing the exchange; a mismatch indicates a lack of synchronism. The

lost channel returns to pickup_sync if it failed to synchronize; the synchronized channels

return to the scheduler if the lost channel failed to resynchronize.
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Because the lost channel had been desynchronized with the other channels from some

time period, the processor state in the lost channel is most likely different than the proces-

sor state of the synchronized channels. It is imperative that once synchronous operation

among all channels is established, the processor state must be made congruent across chan-

nels such that synchronous operation will continue. This ensures that the control flows in

each channel are synchronous. Consequently, before normal scheduling resumes, the
channels must

1) align their congruent memory and

2) align their clocks.

The memory alignment is a process whereby RAM and registers in each processor be-

comes congruent. In this alignment process each processor within the channel transmits

and receives voted messages representing blocks of its congruent memory areas. Voting

this series of messages via the Network Element voted message mechanisms creates bit-

wise voted copies of the memory across all channels. Because the goal is to have identical

state across all channels, the alignment process also includes the processor registers.

In each channel the local interrupt timer is responsible for generating the minor frame

interrupt, typically every 10ms. Because synchronous channels reset their local interrupt

timers in tandem, each channel congruently maintains system time. When a channel is

desynchronized it does not participate in theg_me synchronization; its system time tends to

drift. The time alignment process restarts c6ngruent time keeping by resetting and activat-

ing its local clock after a lost channel has been resynchronized and its state aligned. Be-

cause the memory alignment process (through message exchanges) has tightly synchro-

nized each channel, the clock activation minimiz_es the skew among the timer interrupts.
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Figure 5-35. Lost Ch:mnel Synchronization

Although this recovery option is an attractive alternative because it maintains the redun-

dancy level of the virtual group, it is not suitable to all operational situations because the
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alignment process requires exclusive control of the virtual group for a significant time pe-

riod (on the order of 1-2 seconds for 1M RAM). During this time period the virtual group

is unable to schedule any real-time tasks nor is it able to respond to any interrupting de-

vices.

Like the graceful degradation strategy this recovery technique can be managed entirely

by the fault masking group which diagnosed itself; it is not necessary to activate the system

manager to control the recovery activity. However, other virtual groups communicating

with the recovering virtual group must be able to tolerate a 1-2 second dropout. This con-..........
stitutes an application-specific decision ..................

5.6.8.2.1.3. Processor Reinte_ation

In some cases a channel failure will manifest itself as a syndrome error indicating that

the processor presented bad data for voting without that channel losing synchronization. In

this case the failure could be attributable to a bad RAM location which could be rectified by

a memory realignment without the resynchronization of a lost channel or just a glitch in an

outgoing message. It is necessary to realign the memory (that is, machine state) of the pro-

cessor with the other channels in order to correct a recurrent syndrome error in a processor.

This strategy has the similar temporal characteristics as processor resynchronization.

5.6.8.2,1.4. ProcessorReplacement

The intent of the processor replacement strategy is to replace the faulty processor with a

spare processor known to be fault free in order to maintain the redundancy level of the vir-

tual group. In this strategy, a spare processor must be located, configured as a member of

the redundant virtual group while the faulty processor is configured as a simplex, and the

memory of the redundant virtual group be aligned. This option also has the similar tempo-

ral characteristics as processor resynchronization.

In this scenario it is necessary that a system-wide task control this process rather than

the diagnosed virtual group itself. Because multiple virtual groups are involved in the re-

configuration process these yirtual groups must be coordinated globally. The system man-

ager maintains knowledge of the health and configuration of all AFTA components. Con-

sequently, it maintains the information required to optimally decide the updated configura-

tion.

5.6.8.2.1.5. __Ps__ccmcnt with !0itializ;ltion
77-!!11

Because the processor replacement strategy suffers a significant time penalty because of

the alignment process, an alternate strategy is posed which closely parallels that strategy.

The processor replacement with initialization alternative replaces a faulted processor with a
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sparebutratherthanalign thevirtual group it initializes all tasks in the virtual group. Task

initialization is expected to require significantly less time than the alignment process.

5.6.8.2.1.6. Task Migration

The strategies specified previously have concentrated around the redundancy con-

straints - either its relaxation (degrade VG) or its maintenance. There may be other con-

straints to a recovery policy such as maintenance of communication among a redundant

virtual group with an I/O device. For example, if a processor of a redundant virtual group

is assigned communication over a FCR backplane bus with a specific I/O device and if that

processor fails, the I/O task could be transferred to another virtual group with a member in

that fault containment region.

This alternative is essentially a single task migration rather than a total transfer of all

tasks to a spare processor as would be the case for a memory alignment. The migration of

a single active task is very complicated, requiring not only the transfer of the task's stack

space but also its global variables which may be scattered throughout memory and, of

course, would likely be intermingled with variables of other tasks. Consequently, a task

migration could only be a feasible recovery "alternative only in circumstances where the mi-

grated task could be transferred and initialized.

5.6.8.2.2. Recovery from Network Element Failure

The failure of a Network Element significantly reduces the reliability of the system.

Not only does its failure increase the probability of a system failure because of the loss of

this shared resource but also because any processors attached to that failed Network

Element are disabled as well despite the health of those processors. If the processors are

members of redundant virtual groups, the redundancy of their associated virtual groups is

decreased.

Because of the criticality of the Network Elements for Byzantine resilient communica-

tions, it is important that recovery of a failed Network Element be attempted. In fact, the

recovery of a Network Element is implicit in the design of the network element architecture

so that the recovery of only the failed NE is much less disruptive of system operations than

recovery of a failed processor. This strategy is described as the Network Element resyn-

chronization option. However, because of the nature of the failure, it is not always possi-

ble to recover a failed Network Element. For the latter situation, a Network Element

masking option is presented.
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5.6.8.2.2.1. Network Element Resvnchronization

The reintegration of a Network Element is a multiple step process which can include

reintegration of the processors into their respective redundant virtual groups:

1) The Network Element must be reset to initialize its internal state.

2) The Network Element must resynchronize itself with the other Network Elements.

3) Processors communicating directly with the resynchronized Network Element can

be reintegrated with the other members of the!r corresponding virtual groups. This could

be accomplished using one of the processor recovery strategies described above.

Because the system manager assumes responsibility for the diagnoses of a Network

Element, it would also reset the faulted Network Element via a voted reset (See Section 4).

This automatically initiates a synchronizatiQn •methodology within the Network Element

which attempts to perform an initial synchronization (ISYNC). When the network fails to

detect an initial synchronization from the other Network Elements, it initiates a resynchro-

nization phase in which it assumes that the other Network Elements are synchronized and it

itself is desynchronized. When the resynChronization has succeeded, the Network

Elements align the configuration tables so that each Network Element has a consistent view

of the system configuration. In this system configuration each processor on this failed

Network Element has assumed a new status as a simplex. If they had been members of re-

dundant virtual groups, they can be resynchronized and realigned using a processor recov-

ery strategy.

5J6.8.2.2.2. Network Element Masking

In some cases a Network Element may not behave correctly even after repeated attempts

to recover that failed Network Element. It may fail to respond to a voted reset or to syn-

chronize with the other Network Elements or it may exhibit faulty behavior shortly after

reintegration. In these cases, it is necessary to permanently disable that Network Element

via a configuration update masking out the failed Network Element. This message (issued

by the system manager) will cause the other Network Elements to disable the faulted net-

work element's data and clock inputs .....

5.6.9. Transient Fault Analy_iz

When a component exhibits faulty behavior, it is important to determine if this failure

resulted from a transient condition or from a•permanent malfunction. If the failure can be

deemed a transient failure then system resources can be utilized most efficiently because the

component can be reintegrated into the functioning system. Since transient failures are as-
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sumed to be caused by some temporary environmental condition (e.g., a power surge),

they are expected to disappear with time. Permanent malfunctions, on the other hand, are

caused by breakdowns of the AFTA hardware that must be physically repaired.

A transient fault strategy will be implemented which resets the component and repeats

the test suite. A subsequent failure is indicative of a permanent failure and the component

would be disabled.

Transient fault analysis can be implemented by one of the following basic strategies:

1) A transient recovery policy

2) A wait-and-see policy, or

3) A no transient fault analysis approach.

5.6.9.1. Transient Reco_

The transient recovery policy would immediately disable the faulty component and im-

plement a recovery policy to reintegrate the faulty component into the system. After suc-

cessful integration, if the component did not fail again during a probationary period, it is

deemed to have suffered a transient fault. Figure 5-36 depicts the algorithm for transient

recovery.
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Figure 5-36. Transient Recovery Algorithm

The distinction between transient and hard failures defines the two functions of the

transient recovery option:

• It decides when it is appropriate to attempt to component recovery.

• Once a component has been reintegrated, it monitors its health for a brief proba-
tion period before declaring it fully recovered.
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Using the transient recovery method, a component recovery is periodically attempted.

If indeed a component encountered a transient fault, it is desirable to recover the component

quickly. Conversely, if the component suffered a permanent failure, it is highly desirable

to avoid excessive computing resources to revive this component. Transient recovery bal-

ances these two requirements by initially assuming that any particular fault is transient (it

has been observed that 50 to 80 percent of all faults in computer systems are transient) and

automatically attempting a recovery. As time passes without the component being recov-

ered, it becomes more likely that the fault is a hard failure rather than a transient, and tran-

sient analysis makes the recovery attempt less often. After a certain period it can be reason-

ably assumed that the failure is a hard failure; therefore, the transient analysis function per-

manently disables the component.

Additionally, it has been noted that permanent failures tend to manifest themselves spo-

radically. A component may be recovered according to the above criteria, but may imme-

diately fail again. Transient fault analysis attempts to prevent this situation by regarding a

recovered component as recovered only on a trial basis. If the component passes its trial

period without further errors, it is regarded as fully recovered and can be incorporated into

the AbTA configuration. On the other hand, if the component fails during the probationary

period, the component is permanently disabled.

If transient recovery fails to reintegrate the faulted component, an alternate recovery

strategy can be invoked. This might be the case ifa processor fault which initiated the pro-

cessor reintegration strategy subsequently suffered another fault. It may be appropriate that

the processor be permanently eliminated from the virtual group via graceful degradation or

processor replacement.

A transient fault can cause a state change which may not disappear with time. Using

the transient recovery methodology, the diagnosed component is essentially initialized,

reintegrated into the operational system and, after the trial period, is exonerated of being

faulty. Because the transient recovery policy attempts to return the component to an opera-

tional state, the transient recovery policy is the most ideal option.

5.6.9.1.1. Processor Recovery

When a processor is diagnosed as faulty, a processor can be disabled yet still maintain

its identity as a member of a virtual group. These processors can be recovered in two basic

ways which depend upon the manifestation of the processor fault using either the processor

resynchronization or the processor integration strategy. As indicated previously, both re-

covery options require a significant amount of time because of the memory alignment pro-

cess integral to these recovery strategies.
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5.6.9.1.2. Network Element Recovery ................

When a Network Element has exhibit_:faulty behavior and is immediately disabled,

that Network Element is reset causing it to lose synchronization with the other network ele-

ments. Since the Network Element communicates with some number of processors which

may be members of redundant virtual groups, each of those virtual groups consequently

loses a channel. Because the Network Elements are integral to Byzantine resilient commu-

nications, it is highly desirable a Network Element which has suffered a transient fault be

reintegrated. A recovery policy should include the reintegration of the Network Element

and, if possible, recovery of all processors as well.

5.6.9.2. Wait and See Transient Analysis Option

The transient recovery option performs the analysis of a transient failure condition by

attempting reintegration of the diagnosed component and analyzing the results. However,

any recovery option to reintegrate a failed component is timely and may be in conflict with

the mission requirements at the time the ree0very is attempted. For these reasons a more

conservative approach is posed as a substitute.

The wait-and-see transient analysis po!!cy does not disable a component until the fault

condition existed for a prescribed period of time. If the fault persists, then the component

is judged to have endured a permanent fault,. If the fault disappears, then it is assumed that

the component suffered a transient fault.

_ ( initiate )

no

\ } disable

! c°mp°nent

(completed)

Figure 5-37. Wait and See Transient Fault Analysis algorithm
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This policy is particularlyattractivewhenthemissionconstraintsdo not permit the im-

plementation of a component recovery strategy and hence, a transient recovery option.

This option may be used in conjunction with a graceful degradation strategy for processor

failures.

5.6.9.3. Na Transient Fault Analysis O.otiott

A no transient fault analysis approach may be selected which immediately disables the

faulty component and does not attempt to reintegrate the component diagnosed as failed.

( initiate )

component

Figure 5-38. No Transient Fault Analysis algorithm

5.6.9.4. Hybrid Transient Fault Analysis Option

When a Network Element fails it is highly desirable to attempt to recover at least the

Network Element in order to maintain a system which is resilient to Byzantine failures.

However, because disabling the Network Element actually desynchronizes it from the other

Network Elements, it is imperative that a failure exist in the Network Element with a high

degree of certainty. For these reasons, a hybrid transient analysis is presented which com-

bines the functionality of the transient recovery and the wait-and-see strategies. This is

depicted in Figure 5-39.
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Figure 5-39. Hybrid Transient Fault Analysis algorithm
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5.6.9.5. Intermittent Fault Analysis

Typically, a component which is failing exhibits faulty behavior sporadically some time

period before its failure becomes unquestionably permanent. If a fault in a component re-

occurs within a predefined time threshold then the fault, originally classified as a transient,

will be reclassified as an intermittent. This intermittent failure interval is assumed to be

greater than the probationary period.

5.6_9.6. Transient Fault Analysis Qotion and System Modes

It may desirable to maintain multiple recovery options for each component which are a

function of the system mode. The system requirements during power-on or standby may

be much less stringent than during the operational mode. Figure 5-40 presents a possible

correlation of transient fault analysis methodologies for processor and Network Element

failures in each system mode.

SYstem

e

N
componenvX
type _ N

processor
failures

network
element
failures

power-on

transient

recovery

transient

recovery

standby

transient

recovery

transient

recovery

operational

wait-and-see
transient

analysis

hybrid
transient

recovery

Figure 5-40. Possible Mapping of Transient Analysis Options to System Modes

5.6.10. Fault Logging

In order to support automatic fault logging and maintenance recording, each fault con-

tainment region will be equipped with a mass memory device. This memory device will

contain non-volatile RAM to ensure that neither maintenance records for each component

nor faults detected during the operational modes disappear when power is lost.

Information regarding the component identifier, number of power-on cycles, time since

power-on, Greenwich Mean Time, fault description, and system configuration will be
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maintainedin the data log for retrieval at a later time by line maintenance personnel. In

addition, this repository will also keep maintenance records such as when each component

was installed or serviced and when the M-BIT test suite last exercised each component.

Any processor within a fault containmenj region may access the mass memory via the

FCR backplane bus. During I-BIT and M-BIT non-fault tolerant mode testing all proces-

sots may access the mass memory to log results of their self tests. In order to facilitate later

fault reporting, the fault information stored during the I-BIT and M-BIT self tests will be

disseminated during fault tolerant operations s0 that all mass memory devices will maintain

identical copies of the fault status of each c_ponent. Even after the distribution of the fault

information, however, it is still possible that__this data will be non-congruent especially if

the communication medium is disrupted between the diagnosing entity and the mass mem-

ory as would be the situation when a Network Element, mass memory device or FCR

backplane bus fails.

During fault tolerant operations the diagnosing virtual group will transfer fault informa-

tion to the system manager which coordinates and distributes this information for storage in

all mass memory devices.

Because the fault log maintains information concerning all faults which have occurred

irrespective of the test mode or the transientanalysis policy active at the time of the fault

detection, there may be logged faults which are indicative of a transient fault and, conse-

quently, are not reproducible (that is, cannot duplicate). The M-BIT tests are useful to dis-

cern whether or not a logged fault was a transient by extensively exercising all functional

components of the LRM identified as faulty.

5.6.11. Fault Reporting

All fault information will be maintained in the mass memory devices in each FCR.

These will be the primary repository for all fault information. During non-fault tolerant op-

erations a processor in each FCR will be capable of extracting this information for transmit-

tal to a fault reporting device attached to the FCR backplane bus. During fault tolerant op-

erations a single processor in the fault containment region will be responsible for extracting

fault information from its local mass memory and for communicating that information to the

system manager via fault tolerant message exch,'mges. The system manager will format the

information for the displays.

Fault status will be reported on three different types of displt, ys - a cockpit display unit

(CDU), a portable intelligent maintenance aid (PIMA) and a fault annunciator panel (FAP).

Page 5-83



5.6.11.1. Cockpit Display Unit

The CDU is a CRT display with a small screen located in the cockpit for display of

system status to the vehicle operator. This display may have three levels of detail with re-

gard to the identification of a faulty component:

1) AFTA system status,

2) LRU level status or

3) LRM level status.

The AFTA system status is merely an indicator representing the GO/NO GO status of

the AFTA system. The AFTA status represents the availability of system components to

achieve the minimum dispatch complement (MDC) required for the mission critical opera-

tion.

Figure 5-41. AFTA System Level Display

The LRU level displays the status of each fault containment region. This status is es-

sentially dependent upon the availability of shared components within the fault containment

region such as the FCR backplane bus or the Network Element. The failure of any of these

components renders a NO GO indication. Because the ability of the Ab"rA to achieve MDC

is not wholly dependent upon the availability of the LRU but depends upon the availability

of processors and I/O devices as well, the display of the LRU status should also include the

display of the AFTA system status.
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LRU 1 slams LRU 2 status :: LRU 3 status LRU 4 status

Figure 5-42. LRU Level Display

The LRM level is the most detailed because it represents not only the status of the net-

work element but all other individual components (that is, processors, IIO devices, power

conditioner, mass memory device, and FCR backplane bus) as well. This display option

can precisely depict the cause of some failures. For instance, if the AFTA system status

indicated a NO GO state, the LRM level depicts precisely which component failures gener-

ated this state. It may have been caused by the failure of a single crucial component such as

a Network Element or it may have resulted by attrition of any combination of I/O device or

processor failures. A possible representation for the LRM display is depicted in Figure 5-

43.
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AFTASystemStatus

.RU4

Figure5-43. LRM LevelDisplay

The CDU will only beupdatedwhile thesystemis in eithera standbyor operational
mode. Communicationwith theCDU requiresthattheAFTA beoperatingsynchronously
with fault tolerantmessageexchanges.

I,_ble Intelligent Maintenance A M

The PIMA is a unit specifically dedicated to aid in maintenance diagnostics. Ideally, it

would resemble a laptop computer with a display, keyboard or buttons, and a printer. It is

employed to initiate maintenance diagnostic testing (that is, M-BIT), to interrogate the

AFTA for detailed fault information logged during operations for display or printing pur-

poses and to extract maintenance records for each component.

The PIMA is plugged into a socket which is located on the outside of each LRU as well

as at other strategic vehicle locations. However, for flexibility in performing maintenance

operations, there are essentially two connection options - AFTA system level and LRU

level. The distinction in these options revolves around the nature of the status of the

AFTA. With the AFTA system level option, a maintenance officer would plug the PIMA

into any socket and would be able to extract fault and maintenance information system-wide

(that is, from all fault containme,at regions). Alternatively, with the LRU level option the

PIMA would require plugging into the specific LRU from which fault and maintenance in-

formation was desired. The former option would require that the AFTA hr._rdware be in

standby mode in order to communicate all system information to the selected socket. The

option is selectable from the PIMA.
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5.6. ! 1.3. Fault Annunciator Panel

The FAP is a panel displaying the "go/no go" status of each component in a fault con-

tainment region. The panels are physically located in each LRU in close proximity to the

LRMs. It is implemented as a series of mechanical switches which are controlled by the

AFTA and which maintain their status when power is turned off. Each switch corresponds

to a single LRM in an easily identifiable pattern so that an LRM which is designated faulty

component can be readily identified and extract_ for maintenance or replacement.

5.7. I/O Services

The Army Fault Tolerant Architecture!/O Services provide efficient and reliable com-

munication between the user and external !/O devices (sensors and actuators). It is logi-

cally segmented into two functional modules& the I/O User Interface and the I/O Communi-

cation Manager (illustrated in Figure 5-44).Applications engineers use the I/O User Inter-

face to define the required I/O activity during the specifications phase. During the execu-

tion phase, the I/O Communication Manager controls the processing of the I/O requests.

The I/O User Interface and I/O Communication Manager are dependent processes, as

depicted in Figure 5-45. The Interface interacts with the application tasks to create an I/O

request database. Further, the Interface and=Communication Manager exchange control and

status information; the output data and con_oi commands are destine for the I/O devices

while the input and status data are sent to the application tasks. Additionally, the Commu-

nication Manager retrieves information from the I/O request and I/O device databases and

interchanges data with the 1/O devices. ........

Applications
Engineer

,i

| User l

Unterfac:J

f

AFTA

I/0
Communicatiol

Manager

I/O 1
Devices

t t I
Specification Execution

Figure 5-44. The AFTA I/O Services
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Figure 5-45. The I/O User Interface and I/O Communication Manager

The preliminary design of the AFTA I/O User Interface is detailed in Section 5.7.1

while the I/O Communication Manager is described in Section 5.7.2. Sections 5.7.3 and

5.7.4 use examples to clarify the description of the AFTA I/O Services: Section 5.7.3

highlights the dependence between I/O requests' execution and processing times.

5.7,1. The AFTA I/0 User lnt._rface

The discussion of the I/O User Interface is separated into three sections: I/O User

View, I/0 Request Construction, and I/O Data Access.

5.7.2. Input!Output User View

There are three desired characteristics of the AFTA I/O process. First, the load mod-

ules of different members of a redundant VG must be identical, even if only a subset of the

members actually execute the I/O operation. The second requirement is that the control

flows of redundant VGs executing I/O must be similar if not identical, even if only a subset

of the members actually execute the I/O operation; heterogeneous I/O must not be allowed

to induce sufficient skew to force the desynchronization of a redundant VG. Finally, when
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redundantI/O is accessed, it is important that the copies of the I/O device be accessed at

very close to the same time.

In addition, it is currently planned that all I/O activity will be synchronized with frame

boundaries. That is, even though I/O requests may be completed at any time within the mi-

nor frames, their data will only be exchanged at the beginning and/or end of the frames.

5.7.3. I10 Request Construction

The AFTA I/O User Interface is a flexib!_ framework which is easily tailorable to meet

the reliability and performance requirements of avionics applications that access external

devices. The Interface is easy to use; the applications designer can specify the I/O activity

in a straightforward manner. In addition, the Interface provides all the tools necessary to

meet AFTA's I/O needs.

The AFTA I/O Services can either communicate directly or indirectly with I/O devices

(sensors and actuators). Direct communication is achieved by sending data and command

information immediately to the device. Indigect communication utilizes an I/O controller to

access a device. This intervening mechanis_ accepts data and control commands from the

VG and then manages the I/O operation.

The AFTA I/O Services support two general types of I/O activity: sequential and con-

current. Sequential 1/0 requires that the VG completely supervise the activity; that is, it

must block itself until the I/O operation has finished. Accordingly, the VG and the I/O de-

vices are tightly synchronized during the !/O activity. This is necessary to communicate

with I/O controllers or devices that have limlited processing capabilities such as A/D con-

verters or "dumb terminals".

Alternatively, concurrent 1/0 allows thcNG to perform other tasks while the I/0 is be-

ing processed. The VG downloads data to the controller, sends an "start" command, and

then executes another process. After the I/O has completed, the VG collects the resultant

input data. The concurrent I/O capability is provided to maximize AFTA's processing

throughput. To permit this parallel I/O - VG processing, smart hardware such as an Ether-

net or 1553 controller is necessary.

The applications engineer defines the required I/O activity. This is accomplished by

specifying one or more I/O requests. The I/O specifications are constructed in an hierarchi-

cal manner, beginning with transactions, continuing with chair, s, and ending with the I/O

requests. Figure 5-46 depicts these components and how they are related.
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.$.7 A. _. I/0 Transactions

A transaction is an autonomous command (or command and response) sequence,

permitting interaction between a VG and an I/O device (IOD). In general, an application

can create three types of transactions:

* An input transaction which is a sequence of instructions that waits for informa-

tion from an IOD.

* An output transaction which consists of a sequence of instructions that sends in-

formation to an IOD and does not expect a response.

An input�output transaction which involves a sequence of instructions that re-

quests information from an IOD followed by a sequence of instructions that

waits for the IOD response.

If the transaction directly accesses an I/O device or controller that has limited processing

capability, then the VG must perform a sequential I/O operation. In contrast, if the device

or controller is relatively intelligent, then the VG can execute a concurrent I/O transaction.

The parameters necessary to specify input and output transactions and examples of their

initialization are illustrated in Figures 5-47, 5-48, and 5-49 respectively. These fields are

defined as follows:

• Transaction_Type. This parameter indicates whether the transaction is an input,

output, or input/output operation.
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Figure 5-46. I/O Transactions, l/OChains, and I/O Requests

• lOD_ldentifier. This is the I/O device identifier. It is used to indicate the corre-

sponding device driver and dete_ine the device's address.

• Num_lnput_Bytes. The num_r of input data bytes that are expected by the

transaction. .....

• Num_OutputBytes. This parameter specifies the number of output data bytes

that will be transmitted by the transaction.

• Dynamic or Static. This field indicates whether the output data for this trans-

action is dynamic (changes with time) or static (time-invariant).

• Time_Out. This is the worst case time that is waited by the VG or an I/O con-

troller for the arrival of an incoming data byte (in microseconds).

• Input_Buffer. Address of the buffer on the VG in which the input data will be

stored.

• OutputBuffer. Address of the buffer on the VG from which the output data

will be transmitted.

• SC_Transactions. An array of transaction identifiers that depicts the transac-

tions that are involved in this transaction's I/O source congruency (SC) algo-

rithm.

• SC_Source. This parameter identifies the source co_gruency algorithm that will

be used. The options are: FromA, From_B, From_C, From_D, and Voted.
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INPUT TRANSACTION INFORMATION :=

- ( TRANSACTION TYPE
IOD IDENTIFIER
NUI_ INPUT BYTES
TIME-OUT -
INPUT BUFFER

SC TR_4NSACTIONS
SC-SOURCE

=> INPUT;

=> GUIDANCE_COMMAND;
=> 12;
=> 128;

=> BUFFER'ADDRESS;

=> SC TRANS_ARRAY;
=> FROM_A);

Figure 5-47. An Input Transaction Record

OUTPUT TRANSACTION INFORMATION :=

- ( TRANS/CCTION TYPE =>
IOD IDENTIFIER =>
NUI_ OUTPUT BYTES =>
DYN/_MIC OR STATIC =>
OUTPUT BUFFER =>

OUTPUT;

ENGINE_ACTUATOR;
6;
DYNAMIC;
BUFFER "ADDRESS);

Figure 5-48. An Output Transaction Record

INPUT OUTPUT TRANSACTION INFORMATION :-

- ( SFRANSACTION-TYPE =>
IOD IDENTIFIER =>

NUM INPUT BYTES =>
NUM-OUTPUT BYTES =>
DYN/_MIC OR STATIC =>
TIME OUT - =>
INPUT BUFFER =>
OUTPGT BUFFER =>
SC TRAtVSACTIONS =>
SC-SOURCE "->

INPUT OUTPUT;

ALTITUDE_SENSOR;

16;

2;

STATIC;

255;
IN BUFFER'ADDRESS;
OI.TT BUFFER'ADDRESS;
SC _RANS ARRAY;

VO_ED); -

Figure 5-49. An Input/Output Transaction Record

Page 5-92



CREATE_TRANSACTION ( TRANSACT]ON_.ID ,
TRANSA CTI ON..INFORMA TION );

Figure 5-50. The Create_Transaction Procedure

After the transaction's parameters have been defined, the Create_Transaction procedure

(shown in Figure 5-50) must be invoked to inform the AFTA I/O Services of the transae-

tion's existence. This call requires two fields:

• Transaction_lD. An identifier that is returned to the application by the Interface,

allowing the transaction to be easily referenced in the future.

• Transaction_Information. The record, described above, which depicts the val-

ues of the transaction's fields.

5.7.5.. I/O Chains

A chain is a set of transactions, grouped toefficiently utilize the communications

bandwidth. Chains are executed as autono_gus units. The transactions of a chain are exe-

cuted serially, and all are either sequential or concurrent I/O. If the chain is a concurrent

I/O operation, then all transactions in the chain must utilize the same I/O controller.

CREATE_CHAIN( CHAIN_ID,
CHAIN I/0 TYPE = > CONCURRENT;

TRANSTtCTION ARRAY => TRANSACTION 11) ARRAY);

Figure 5-51. The Create_Chain Procedure

After a chain's transactions have been specified, the Create_Chain procedure, depicted

in Figure 5-51, should be executed to link the chain to its transactions. It has three parame-

term
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• Chain_lD. An identifier that is returned to the application allowing the chain to

be easily referenced.

• Chain_I/OType. A field that indicates whether the I/O is sequential or concur-

rent.

• Transaction_Array. The array of transactions that comprises the chain.

5.7.6L I/0 Requests

An I/O request (IOR) is one or more chains of transactions. All !/O is structured as I/O

requests.

Each chain of an I/O request is executed nearly simultaneously. This requirement is

desirable because it allows two or more chains to request redundant information. If all

chains are executed within a negligible skew, then data from redundant sensors can be re-

trieved at nearly the same time and the information can be subsequently compared to mask

invalid data.

CREATEI/O_REQUEST( IOR ID,
RATE OF IOR =>
EXECUTION FRAMES -->
CHAIN ARR_4Y =>
EXECUTION TIME =>

R2;

(o, 4);
CHAIN 1D ARRAY;

IOR_E_EC__TIME) ;

Figure 5-52. The Create_I/O Request Procedure

After an I/O request's chains have been specified, the Create_I/O Request procedure,

illustrated in Figure 5-52, should be invoked. This call has five parameters:

• IOR_ID. An identifier that is returned to the application allowing the I/O re-

quest to be easily referenced.

• Rate of__lOR. A parameter that indicates the rate group of the I/O request, ei-

ther RG4 (100 Hz.), RG3 (50 Hz.), RG2 (25 Hz.), or RG1 (12.5 Hz.).

• Execution_Frames. The frames in which this I/O request will be executed

(started in the beginning of the frame). It will be some combination of numbers

ranging from (-1) through 7. If the field is set equal to (-1), then the I/O request

is started in the beginning of the frames in which it is processed. Strict control

over the execution and processing frames is desirable to efficiently manage

combinations of I/O requests that stress the 10 ms. throughput bounds.

• ChainArray. The suite of chains that comprises the I/O request.
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ExecutionTime. The worst caseexecution time for the I/O request. It is equal

to the I/O request time out; that is,t_e total amount of time the VG waits before

presuming that the I/O request has completed executionl

5.7.7. I10 Data Access

The applications user perceives all I/O devices to be memory mapped even though

many devices may be connected to the VG_through I/O controllers. The appearance of

memory mapped I/O is attained by establishing data sections in VG memory to emulate the

data regions in the I/O devices or controllers, These memory buffers are allocated by the

application and their addresses are passed to the I/t9 Services when the transactions are de-

fined. The applications engineer communicates to I/O devices by simply writing to and

reading from the corresponding local memory regions.

The reading/writing protocols between the VG and the I/O device are transparent to the

user. When the I/O request is executed, the I/O Communication Manager reads data from

the request's output buffers and sends it, along with command information, to the destina-

tion I/O devices. After the I/O request has _en processed, the data returned by the devices

is stored into the application's input buffers.

Since the application tasks and the I/O Communication Manager share I/O data buffers,

both processes could simultaneously updatethe same memory area. For example, the fol-

lowing scenario could occur: (1) an application task begins to modify a data buffer, (2) it is

preempted by the I/O Communication Manager before it completes the update; and (3) the

I/O Communication Manager begins to re_d or write into the buffer. Such simultaneous

modification of an I/(3 request buffer could cause inconsistent or corrupted data to be sent

to the I/O devices or read by the application. To prevent (or detect) this condition, the I/O

Interface provides procedures that allow the application to lock and unlock the data buffers.

In addition to input data, the I/O Communication Manager receives status information

from the I/0 devices. This status is recorded in the VG's memory after the I/O request has

been executed and processed. (Buffers ar_allocated by the I/0 Interface to store the I/O

status when each request is created.) The UO User Interface provides routines to allow the

application to read this data.

The buffer control and status retrieva! procedures are discussed in more detail in Sec-

tions 5.7.1.3.1 and 5.7.1.3.2, respectively:

5.7.8. The Buffer Control Procedur_

To ensure that data buffers for an l/O request are accessed mutually exclusively, the !/0

Interface allows the user to lock the request's data regions. Prior to reading or writing
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data,theapplicationmustinvoketheLock_I/O_Request_Buffer procedure (shown in Fig-

ure 5-53) to reserve the memory.

LOCK1/O_REQUEST_BUFFER ( IOR ID,
IN_USE);

Figure 5-53. The Lock_I/QRequest__Buffer Procedure

The procedure requires two parameters, one provided by the user and the other returned

by the Interface. The IOR_ID field is specified by the application to identify the request.

The InUse field is a boolean returned by the procedure indicating whether or not the re-

quest's buffers are currently being accessed by the Communication Manager.

If an I/O request's buffers are not "in use" when Lock_I/O_Request_Buffer is exe-

cuted, then they are reserved by the procedure. After the application data has been read or

written, the buffer must be unlocked. This is done by calling the U n-

iock_l/O_Request_Buffer procedure. This routine frees the buffers and thus allows the 1/O

Communication Manager or another application task to modify the memory region. The

procedure, which is illustrated in Figure 5-54, requires that the I/O request ID be provided

by the user to identify the buffer.

UNLOCK_I/OREQUESTBUFFER ( IOR_ID);

Figure 5-54. The Lock_l/O_Request_Buffer Procedure

If the application tasks and I/O Communication Manager contend for the one or more

buffers (i.e., In_Use is true), then a fatal scheduling error has occurred. If a collision oc-

curs, the user has to redesign the application tasks, the I/O requests, or both, because con-

tention recovery mechanisms are not provided by the I/O Services.

As discussed, the Lockl/O_RequestBuffer procedure informs user of one of two

possible contention scenarios: the I/O Communication Manager is using an I/O request's

buffers when an application task wants to access them. The second scenario is the reverse

case: the I/O Communication Manager wants to read or store information but an application

task has locked the buffers. This is also a fatal scheduling error of which the user must be

informed. If this type of fault occurs, an exception, 1/O_Buffer_Contention, is raised by

the I/O Services and passed to the application. To recognize the error, the user must write
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an exception handler in each application task. As with In_Use, I/O_BufferContention re-

quires that either the application tasks or the I/O requests have to be modified. (Figure 5-

55 depicts the declaration of the exception and an example exception handler.)

Exception Declaration:

I/O BUFFER CONTENTION: EXCEPTION,"

Exceptipn Handler:

WHEN I/O BUFFER CONTENTION => WRITE ERROR STATUS;
.... STOP PROGRAM EXECUTION;

Figure 5-55. The I/O_Buffer_.Contentio_ Exception and Error Handler

As mentioned earlier, after an application's I/O requests have been executed, the input

data from the I/O devices is deposited into the application's input buffers by the I/O Com-

munication Manager. The data, however, isnot necessarily error-free. The user must ac-

cess the I/O request status information, which is also recorded by the Communication Man-

ager, to determine if any of the data is faulty.

The I/O User Interface allows the application tasks to retrieve status information on an

I/O request, chain, or transaction basis. _e procedures that enable this access are illus-

trated in Figure 5-56.

CHECK_I/O_REQUEST FOR_ERRORS ( IOR_ID,
I OR_HAD_ERR OR ) ;

CHECK_CHAIN_FOR_ERRORS( CHAIN IO,
CHAIN-HAD ERROR,
ALL TRANSACTIONS ARE BAD,

CH_N_DID_NOT_CO_IPLETE);

CHECK_TRANSACTION_FOR_ERRORS( TRANSACTION ID,
TRANSACTION-HAD ERROR,

I/ O_D EVIC E_S'ffA TUS_"

Figure 5-56. The I/O User Interface Status Retrieval Procedures
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TheCheck_l/O_RequestFor_Errors procedure indicates whether or not any of the I/O

request's chains encountered an error during their execution. The lOR_Had_Error boolean

is set to true if an error has occurred.

The Check_Chain_For__Errors procedure designates that a portion of the chain's data is

faulty; it sets the Chain_Had_Error field to inform the application. It also returns other

status information: (1) All_Transactions_Are_Bad, a flag that indicates whether or not all

transactions in this chain have errors; and (2) Chain_Did_NotComplete, a boolean which

informs the user that, for some reason, some of the chain's transactions were not executed.

The Check Transaction For Errors procedure returns the Transaction_Had_Error pa-

rameter to inform the user whether or not a transaction has an error. In addition, it pro-

vides the I/0 Device Status field to indicate the status of the I/O device when the transac-
m

tion was executed (either active or failed).

5.7.9. Th_ AFTA I/O Communication MAtnagcx

The AFTA I/O Communication Manager supervises the execution and processing of the

I/O requests. It involves two key components: the Nonpreemptable I/O Dispatcher and the

I/O Request Tasks. These processes are illustrated in Figure 5-57.

The Nonpreemptable 1/O Dispatcher manages the execution of the I/O requests whereas

the I/O Request Tasks perform the error detection processing and return the data and status

information to the application tasks. These processes are discussed in Sections 5.7.9.1 and

5.7.9.2, respectively. In addition, the scheduling of the I/O Dispatcher and the Request

Tasks is outlined in Section 5.7.9.3.
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Figure 5-57. The I/O Communication Manager

5.7.9.1. The Nonpreemptable I/0 Dispatcher

The Nonpreemptable I/O Dispatcher is a task on the VG that manages the execution of

the I/O instructions that cannot be interrupted. For the AFTA, two types of nonpreempt-

able instruction sequences exist: (1) the execution and reading of sequential I/O; and (2) the

execution of concurrent I/O.

Sequential I/O must be carefully controll_ by the VG, because the associated destina-

tion I/O devices have limited processing and storage abilities. Furthermore, applications

that utilize sequential I/O often require that data be sent or received quickly and in au-

tonomous batches. If the VG is interrupted, then the I/O operation could be delayed con-

siderably. Thus, the execution of sequential I/0 can not be preempted. Additionally, since

these I/O devices have minimal memory Capabilities, the input and status data for each

transaction must be read before a subsequen t transaction can be executed. Therefore, the

reading of sequential I/O 'also cannot be interrupted.

In contrast to sequential I/O, concurrent i/O is managed by an intelligent I/O controller,

permitting the IOC and VG to run in parallel. The VG, however, must initiate the I/O ac-

tivity by sending a sequence of "start" instructions to the IOC. This sequence can not be
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interruptedif theI/O requestsareto executecorrectly. Accordingly, theNonpreemptable
I/O Dispatchermustinitiateall concurrentI/O.

To ensurenonpreemption,the I/O Dispatchermust complete in lessthan 10ms.,
which is theminor frame. Thus,theapplicationmustdesignandorganizeits nonpreempt-
ableI/O activity suchthat theI/O Dispatcherdoesnotexceedthisconstraint. In addition,
theDispatchercannotbeinterruptedby otherI/O activity (becauseit would be delayed and

the n possibly preempted); thus, it must have the highest priority of the I/O tasks.

The control flow of the Nonpreemptable I/O Dispatcher Task is illustrated in Figure 5-

58. The task is scheduled by the Rate Group Dispatcher every 10 ms. Since the type and

amount of I/O activity typically varies with each frame, the minor frame number must be

determined every time the task is executed. Frame tracking is accomplished by maintaining

a modulo 8 counter.

Once the frame number is identified, the Nonpreemptable I/O Task executes the associ-

ated I/O requests. The concurrent I/0 is executed before the sequential I/O. This allows

the VG to execute and process the sequential I/O while the associated I/O controllers are

processing the concurrent requests. Some I/O requests may be comprised of both sequen-

tial and concurrent I/O chains (referred to as "mixed I/O requests"). They are executed by

the Nonpreemptable I/0 Task after the concurrent I/O requests but before the sequential I/O

requests. This allows the mixed I/O chains to be executed nearly simultaneously while not

blocking the execution of the concurrent I/O requests. For clarity, the execution of mixed

I/O requests is not explicitly shown in Figure 5-58.
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task NONPREEMPTABLE I10 DISPATCHER is

FRAME_COUNTER : lntege-r := O; ....
begin

loop
-- Wait for the I/0 Dispatcher tobe scheduled by the Rate Group
-- Dispatcher.
WAIT_FOR_SCHEDULE; : _ :

case FRAME_COUNTER

0 =>

for l/O_cnt in Concurrent fflO_Frame_.O
loop

Execute Concurrent I/0 (I/O_cnt);
end loop; -_

for l/O_cnt in Sequential_l/O Frame_O
loop

Execute._Sequential_l/O (l/Ocnt);
end loop;

FRAMECOUNTER := 1;

=>

for i/0 cnt in Concurrent I/0 Frame 1
w u

loop

Execute_Concurrentl/O( I/O cnt) ;
end loop; :

for llO_cnt i_ Sequential_l/O_Framel
loop

ExecuteSequential_I/O (llO_cnO;
end loop,"

FRAME COUNTER := 2,"

=>

for I/0 cnt in Concurrent I10 Frame 7

loop

Execute_Concurrentl/O(l/O_cnt) ;
e_u:l loop;

for l/O_cnt in Sequential_I/O_Frame7
loop

Execute_Sequentiall/O (I/O_cnt) ;
end loop;

FRAMECOUNTER := O;
end case;

end loop;
end NONPREEMPTABLE I/0 DISPATCHER;

Figure 5-58. The Nonpreemptable I/O Dispatcher
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5.7.9.1.1. The 1/0 Request Tasks

lgO Request Tasks are primarly responsible for the two functions not completed by the

Nonpreemptable I/O Dispatcher: (1) processing sequential I/O; and (2) reading the concur-

rent I/O data and processing concurrent requests. Since these operations can be time-con-

suming and preempted by higher priority tasks, they are not performed by the I/O Dis-

patcher. (As mentioned earlier, the Dispatcher must complete its execution in less than 10

ms.)

To process sequential I/O, the I/O Request Task executes the error detection routines

and returns the input data and status information to the application; the redundancy man-

agement functions are not performed because the sequential input data has been previously

read and distributed to the VG by the Nonpreemptable I/O Dispatcher. In contrast, the I/O

Dispatcher does not read the concurrent input data; therefore, the concurrent I/O processing

invokes the redundancy management routines as well as executes error detection proce-

dures and stores the input data and status information.

An I/O Request Task is spawned for each I/O request that is created by the user. The

Tasks are scheduled by the Rate Group Dispatcher and each falls into one of four rate

groups:

• RG4 - 100 Hz. tasks.

• RG3 - 50Hz. tasks.

• RG2 - 25 Hz. tasks.

• RG1 - 12.5 Hz. tasks.

As described in Section 5.3.1, the RG4 group has the highest priority of the preempt-

able I/O; RG 1 has the lowest. Low priority I/O processes are interrupted by higher priority

tasks at the 10 ms. minor frame boundaries. These lower priority tasks are resumed after

all higher priority processes have completed.

5.7.9.1.2. Dispatching

The Rate Group Dispatcher uses events to trigger the execution the Nonpreemptable I/O

Dispatcher and the Preemptable I/O tasks as well as the other system and application tasks.

The Nonpreemptable I/O Dispatcher is the first I/O task to be scheduled in each frame to

ensure that it is not interrupted. It is, however, scheduled second overall. The Fault De-

tection, Identification and Reconfiguration (FDIR) task is executed before the Nonpreempt-

able I/O Task, because the configuration of the AFTA is important to the I/O Services and

FDIR's processing time is short and deterministic.
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Theexecutionorderof theI/O RequestTasksdependson therequest'srategroupand
inter-groupprecedence.As discussedin S_ons 5.7.2.2and5.3.1,RG4groupsareexe-
cutedbeforethe RG3, RG2, andRG1groups;RG3prior to RG2 andRG1; etc. More-
over, within eachrate group,precedencesdeterminethe schedulingorder; that is, tasks
with higherprecedencesexecutebeforethosewith lowerones.

The AFTA Dispatcherandrategroupschedulingparadigmarediscussedin detail in
Sections5.2 and5.3.

5.7.9.2. AFTA InputOutputServices:Examples

Two examplesarepresentedto illustratethe interdependencebetweenanI/O request's
executiontimeandtheframein whichtheI/O requestprocessingis performed.In eachex-
ample,four I/O requestshavebeencreated;oneperrategroup. For theillustration,asetof
parameterswasassignedfor eachrequest._e Execution_Frames and Chain_Array pa-

rameters were selected arbitrarily and do not effect the example. On the other hand, the Ex-

ecution_Time parameter, which specifies the amount of time necessary for the I/O request

to be executed and processed, was chosen C_efully and greatly effects the scheduling of

the I/O requests. This field is varied to illustra__te the I/O requests' execution dependence.

5.7.9.2.1. Exatnple #I: A 11I/0 Request_can be Completed in 10 ms.

In Example #1, all I/O tasks are begun and completed within one frame (FDIR is ne-

glected to clarify the example).

• Frames 0 - 7: The Nonpreemptable I/O Dispatcher and the RG4 I/O request are

executed and processed.

• Frames 1, 3, 5, 7: The RG3 request is executed and processed after the I/O

Dispatcher and RG4 tasks have completed.

• Frames 3, 7: The RG2 I/O request is executed and processed after the I/O Dis-

patcher, RG4, and RG3 tasks h_completed.

• Frame 7: The RG 1 request is executed and processed after all other tasks have

completed.

This example, which is specified in Figure 5-59 and depicted in Figure 5-60, comprises

the baseline illustration of I/O scheduling in the rate group paradigm.

__p!¢ #2: All I/0 Requests can not be Comp_Icted in 10 ms.

In Example #2, the ExecutionTime parameters, which are presented in Figure 5-61,

are larger than in Example #1.

• I/O Request #1" Execution_TimLequals 4.0 ms.; it was 1.3 ms.
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• I/O Request#2: Execution_Time equals 3.2 ms.; it was 2.2 ms.

• I/O Request #3: Execution_Time equals 3.7 ms.; it was 1.9 ms.

• I/O Request #4: Execution_Time equals 3.6 ms.; it was 2.1 ms.

The longer execution times cause I/O request #1's execution/processing to be delayed

and I/O request #2 to be interrupted. Specifically,

I/O Request #1 (RG1): This request was supposed to execute in frame #7.

However, it was executed and processed in frame #0, because the processing

requirements for the I/O Dispatcher, RG4, RG3, and RG2 tasks consumed all

of frame #7.

I/O Request #2 (RG2): This request was started in frame #3 but did not finish.

As a result, it was preempted in the beginning of frame #4 by the higher priority

tasks, the Nonpreemptable I/O Dispatcher and RG4. After these processes

completed, I/O request #2 was resumed and completed. Similarly, I/O request

#2 did not complete in frame #7; it was preempted and subsequently completed

in frame #0.

Even though i/O requests #1 and #2 are not completed in their designated minor frame,

the major frame requirements are met. That is, I/O requests #1, #2, #3, and #4 fulfill their

respective 12.5 hz., 25 hz., 50 hz., and 100 hz. I/O requirements. This scheduling exam-

ple is illustrated in Figure 5-62.
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CREATE_I/O_REQUEST(

CREATEI/O REQUEST(

CREATE_I/O_REQ UEST(

CREATE_I/O_REQUEST(

IOR #I,
RATE OF IOR => RI;

EXE_ION FRAMES => -I;

CHAIN_ARt_A Y,

EXECUTION TIME = > 1.3 ms );

IOR #2,
RATE OF IOR => R2,"
EXECUTION FRAMES => -1;

CHAIN_ARffAY,

EXECUTION TIME = > 2.2 ms );

IOR #3,
RATE OF IOR => R3;
EXECUTION FRAMES = > -I;

CHAIN__ARI?AY,

EXECUTION TIME = > 1.9 ms );

IOR _,
RATE OF IOR => R4;
EXEC/"UTION FRAMES = > -1;

CHAIN_ARRAY,

EXErTION_TIME => 2.1 ms );

Figure 5-59. I/O Requests for Example #1

10 ms. Frame

RG3

Nonpreemptable UO

Frame 3

RG2

Frame 4

Figure 5-60. Example #1

RGI
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CREATE I/OREQUEST(

CREATE..IIO_REQ UEST(

CREATE_I/O_REQUEST(

CREATE_I/O REQUEST(

IOR #1,
RATE OF IOR => R1;
EXECUTION FRAMES => -1;

CHA IN_A RRA Y,

EXECUTION TIME => 4.0 ms );

IOR #2,
RATE OF IOR => R2;
EXECUTION FRAMES = > -1;

CHAIN ARRAY,

EXECUTION TIME = > 3.2 ms );
m

1OR #3,
RATE OF IOR => R3;
EXECUTION FRAMES = > -1;

CHA IN_A RRA Y,

EXECUTION TIME => 3.7 ms );

IOR #4,
RATE OF IOR => R4;
EXECUTION FRAMES = > -1;

CHAIN_ARt_AY,

EXECUTION TIME => 3.6 ms );

Figure 5-61. I/O Requests for Example #2

ne2 Frame3 Frame4 [ FrameS ] Frame, l_-ame7-
,,;,od/ /

\ " RGI
Processing of RG2,
resumed and completed

Figure 5-62. Example #2
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6. Fault-Tolerant Data Bus

The fault-tolerant data bus (FTDB) is a l_al-area network designed around the same

principles of Byzantine resilience as the AFT A. The FTDB is a highly reliable end-to-end

communication system interconnecting the AFTA, other fault-tolerant computers, the

Silicon Graphics display processor, the Merit Technologies MT-1 VME system, the real-..................

time AI system, sensor and image processors, and flight and engine controls.

6.1. Objective and Approach

The objective of the fault tolerant data bus is to provide an optimal internetworking

system between simplex and redundant processing sites. The approach taken in this report

to develop such a system is to first identify requirements to which the FTDB should

conform. Next, architectural options for the _B are described and evaluated with respect

to figures of merit. Promising options are d escn'bed in greater detail as a proposal for an

FTDB architecture. Finally, a development plan for execution under the Detailed Design

and Brassboard Fabrication phases of the AFTA program is described.

The following VI'DB architectural optiofis are investigated.
broadcast buses

token rings
circuit switched network

packet switched network
fiber optic networks
authentication protocols ....

The FTDB architectural options are evaluated according to the following figures of

merit.
bandwidth

latency
determinism

compatibility with applicable standards
fault tolerance

topological flexibility
complexity
development cost/effort/risk ii

The following standards are investigated and considered for use in the FTDB.
AIPS Inter-computer network
JIAWG high-speed data bus
SAVA high-speed data bus
FDDI

SAFENET II
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A design for the FTDB architecture is presented based on the findings of the

architecture survey. The conceptual design describes an end-to-end communication system

for use between the AFTA, other fault-tolerant architectures, and simplex sites. A plan

showing the development of a prototype FTDB for the AVRADA hotbench is described.

6.2. Fault-Tolerant Data Bus Requirements

The anticipated requirements for the fault-tolerant data bus are given below. Potential

FTDB implementations are evaluated based on their adherence to these requirements. The

requirements given below represent goals based on the anticipated needs of critical real-time

systems. Some requirements may not be achievable due to time constraints, money

constraints, or standards restrictions.

6.2.1. Packet Requirements

The requirements de_ribed in this section detail restrictions on packets in the bTDB.

(5.2. I.I. Word Length

The b'TDB shall incorporate a basic word length of 8 bits.

0.2.1.2. Packet Length

The FTDB shall allow packets to be any length between 1 basic data word and 2048

basic data words.

6.2.2. Network Control Rec!uirements

This section details requirements for media access control, station addressing, and flow

control.

6J2.2.1. Access Control Modes

Access to the bTDB shall be controlled using a distributed and symmetric access

protocol. A station on the FTDB shall be able to obtain access to the network within an a

priori determined latency.

6.2.2.2, Address Modes

The b'TDB shall support the following addressing modes:
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Physical addressing-The FTDB shall

stations.

Support physical addressing of up to 65535

Logical addressing-The FTDB shall support logical addressing of up to 65535 virtual

station groups.

Broadcast addressing-The FTDB shall support broadcast addressing of all stations

attached to the same physical FTDB.

6.2.2.3, Uncontrolled Transmit lnhibit

Each station on the FTDB shall provide a mechanism to prevent uncontrolled

transmission (babbling). Transmission shall be inhibited if a continuous transmission

exceeds 1.1 times the maximum message length. Transmission shall also be inhibited if a

station exceeds its allotted transmission frame:

6.2.2.4. Flow Control

The FTDB shall implement a flow control_mechanism so that a station with full receive

buffers will prevent packets from beingdelivered to that station. Packets must not be lost

due to a receive buffer full condition.

6.2.3. Network Function Requirement

This section describes the functions that the FTDB provides to subscribing stations.

6.2.3. I. Broadcast_and Multicast Functions

The FTDB shall support broadcast and multicast functions. Only stations connected to

the same physical medium as the source of the broadcast or multicast are required to receive

the packet.

62.3.2.• Periodic and_Aperiodic Tran_fcgs

The FTDB shall provide both periodic and aperiodic packet transfers. Periodic transfers

will request a fixed bandwidth allocation, The FTDB shall guarantee the bandwidth

allocation to all periodic transmitting entities:
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6.2.33. Packet Ordering

The FTDB shall deliver packets to station members, and to members of a multicast or

broadcast group in the same relative order that the packets were transmitted.

6.2.3.4. Station IdentitTcation

It shall be possible for any station on the FTDB to determine if an expected station is

active.

6.2.4. To_Dolo_ and Architecture Requirements

This section describes requirements on the topology and architecture of the FTDB

6.2,4.1. Growth

The FTDB shall permit the addition or deletion of stations to an existing network. This

addition or deletion shall not require modifications to either hardware or software of any

station which does not communicate with the station in question.

6.2,4,2. Topology

The topology of the FTDB shall support from 2 to 100 stations on a single physical

medium. The topology shall not restrict the physical or logical location of a station.

6.2.4.3. Station Insertion and Removal

The insertion or removal of a station shall not disrupt network traffic on an active

network for longer than 1 second.

6.2.4.4. Bridges for Interconnected Buses

The architecture of the FTDB shall not preclude the use of bridges or gateways between

FTDBs. Bridges and/or gateways do not need to support all traffic between FTDBs. In

particular, the following are NOT required of bridges/gateways:

Broadcasts and multicasts.
Periodic data transfers.

Deterministic latency.
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6.2.5. Physical Requirements

This section describes requirements of the physical elements interconnecting stations on

the FTDB.

6.2.5.1, Serial Transmission

The FTDB shall be implemented using a serial bus. All information, including data,

clock, address, and control signals, must be capable of being placed on a single

transmission medium (e.g., twisted pair, coaxial cable, fiber optic cable, etc.)

6.2.5.2. MediaSupport

The FTDB shall be compatible with any serial transmission media, including, but not

limited to, fiber optic cables, twisted pair wire, or coaxial cable.

6.2.5,3. Electrical l_olation

There shall be no DC coupling between any two stations on the FTDB. The FTDB shall

provide for at least 1000 volts of common-m_e voltage rejection between stations.

6.2.5.4. Station Separation

The FTDB shall provide for separation of up to 1000 meters between stations on the

same physical medium. .....

6.2.6. Fault Tolerance Requirements

This section describes requirements on the FTDB necessary to ensure the high

reliability of the system.

6.2.6.1. Packe_9_e "vliy__

Delivery of packets from a source to a destination in the FTDB shall be reliable. Packets

shall not be lost due to single network faults, flow control, or collisions. The FTDB shall

not require a retry mechanism to ensure packet delivery through an unreliable medium.

6.2.6.2. Synchronization

The FTDB shall provide a mechanism for stations to synchronize with other stations on

the FTDB.
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6.2.6.3.._ Source Congruency_

The FTDB shall provide a mechanism for delivering packets transmitted by a simplex

computing site to a redundant computing site such that the members of the recipient

computing site receive bitwise identical copies of the packet. The b'TDB shall correctly

implement transmission between stations of simplex, triplex, and quadruplex redundancy

levels to support Byzantine resilience.

6.2.6.4_ Connectivi_

An FTDB implementation shall provide sufficient connectivity so that multiple

independent paths are provided between any two stations on the network. These

independent paths shall have no common element. This connectivity may be provided with

either multiple media layers or with a sufficiendy interwoven network.

6.2.6.5. Station to Network Interface

The network interface unit (NIU) which connects a station to the FTDB network shall

not permit a single station member to disrupt a path on the network.

6.2.6.6. Redundancy

The FTDB shall provide sufficient redundancy to allow reconfiguration around any

fault, given that the fault is detected.

6i2,6,7, Station Redundancy

The b'TDB shall support station redundancy levels of simplex, triplex, and quadruplex.

The FTDB shall deliver data from a simplex to a fault-masking group (triplex or

quadruplex) such that each member of the fault-masking group receives bitwise identical

copies of the data.

6.2.6.8. Error Detection

A receiving station shall be capable of detecting errors in transmission. Upon error

detection, it must be possible for the receiving station to unambiguously select a correct

copy of the packet from a set of multiple copies without requesting retransmission of the

packet. The error detection mechanism must be designed so that the likelihood of an

undetected error is sufficiently small.
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6.2.6.9. Diagnosability

The FTDB shall provide the capability to monitor the network and to detect any single

fault.

6.2.6.10. Self-Test

The network interface unit (NIU) must provide sufficient independent self-test

capability to ascertain the level of NIU functionality. The built-in self test capability shall

have a coverage of at least 90%.

62.6J1. Byzantine Resilience

A single, arbitrarily behaved media, station member, or NIU fault shall not affect the

overall operation of the FTDB. All packets must be delivered to their destinations in the

presence of a single undetected, unreconfigured fault. After successful detection and

re.configuration of a fault, the reliability of the network must be returned to its original state,

with the exception of the station(s) directly affected by the fault.

6.2.6.12. Fault Isolation and Containment

A fault in a NIU, station member, or interconnecting link shall not cause a fault in any

other NIU, station member, or interconnecting link.

6.2.7. Performance Requirements

The following section describes the FTDB _rformance requirements.

6.2.7.1. Message Priorities

The FTDB shall provide for the following message priorities:

Priority S - Synchronous data exchange. The latency of a synchronous message must

be guaranteed to be less than an a priori dete_ined Value. Synchronous data exchanges are

the highest priority data. Any synchronous data messages enqueued in a transmitting

station shall be transmitted before messages 0f-_y other priority level.

The FTDB shall also support four additional levels of message priority for normal data

exchanges, named Priority 1, Priority 2, Priority 3, and Priority 4. The lowest numbered
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priority level, Priority 1, is the highest priority of the normal data exchanges. Normal data

exchanges are lower priority than Priority S.

A transmitting station shall transmit all messages of a given priority before messages of

a lower priority are transmitted.

Only normal data exchanges must be supported across bridges or gateways.

6.2.7.2_ Network Bandwidth

The FTDB shall provide a useable data transmission rate of at least 100 Mbits/second.

6.2_7.3. Initialization Time

The F'TDB shall be available for packet transmission between the first two active

stations on the network within 1 second of activation of the second station.

6.3. FTDB Architecture Study

This section discusses some of the architectural options for the FTDB. These options

include topology, media technology, media access control protocols, and reliability

enhancements. This section is not meant to be a comprehensive study of all possible

options for the F_DB. Instead, only options which were deemed to have merit for

applications in critical real-time environments were considered.

6.3.1. Broadcast Buses

A common type of physical network topology is the broadcast bus. An example of the

broadcast bus topology is shown in Figure 6-1. Many examples of the broadcast bus exist,

including IEEE 802.3, IEEE 802.4, and MIL-STD-1553. A common characteristic of

these systems is that every node on the bus receives all data transmitted over the network.

Each node selectively records data based on an address. If the address presented does not

match the address the node is programmed to look for, the node ignores the data.
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Figure 6-1. Broadcast Bus Topology

station

bus

terminator

Only one node at a time is allowed to transmit data on the bus. Media access control is

necessary to prevent the presence of two active transmitters. Many schemes exist for media

access control on buses, including carder sense, token passing, and centralized arbiters.

The IEEE 802.3 LAN [IEEES023] is an example of a network that uses carder sense

for media access control. The exact protoc_ol used by 802.3 (and Ethernet, on which 802.3

is based) is carrier-sense multiple access with collision detection (CSMA/CD). The process

of transmitting data on 'the bus begins with the station checking the bus to make sure the

media is clear. If so, the station begins tr_mitting. During transmission, the station

monitors the bus, and if a collision with ano_er transmitting station is detected, the station

retries the broadcast. The time to retry is determined by a pseudo-random number to

minimize the possibility of repeated collisions between stations. A variation of the

CSMA/CD protocol is carrier-sense multiple access with collision avoidance (CSMA/CA).

While the carrier sense media access protocols are very common, they have some

limitations. First is non-determinism. Slight differences between network implementations

may favor one transmitter over another in a particular arbitration instance. Also, the

bandwidth available to a transmitter may v_ widely depending on other network traffic.

In a system with varying bursts of data, it may be difficult for a transmitter to obtain the

network regularly. Since regular, periodic data transfers are characteristic of real-time

systems, carder sense protocols may not be appropriate for a real-time system. Finally, a

babbling station can monopolize the bus, preventing other stations from communicating.

A second common media access contr0! is the token passing protocol. Buses which

implement a token passing protocol are usually referred to as linear token passing buses

(LTPB), an example of which is IEEE 80_.4 IIEEE8024]. Each station on a LTPB is

arranged in a virtual ring. A token is passed between stations on this virtual ring. A station

is only allowed to transmit when it possesses the token.
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The token passing protocol solves many of the deficiencies of carder sense protocols

related to real-time systems. Most token passing protocols use a token rotation timer to

ensure that the token is delivered to each station within a fixed period of time. This token

rotation time can be tailored to the periodic data transfer characteristics of the real-time

system, thus ensuring that the deterministic data transfer needs of the system are met.

The MIL-STD-1553 [MIL-STD- 1553] data bus uses a centralized bus arbiter to control

access to the bus. A 1553 network has a single controller device. Initially, only the

controller is allowed to transmit on the bus. The transmitter selects other nodes on the

network to allow them to drive the bus for fixed periods of time. When the remote node is

finished transmitting, bus ownership is returned to the bus controller, which then selects

another node to drive the bus.

Centralized media access control has the advantage of simplicity over most other media

access protocols. However, it also has many limitations. Since the media access control is

centralized in the bus controller, the bus controller becomes a single point of failure. Also,

interrupt delivery from a remote node to the bus controller is difficult. Thus, each node on

the network must be polled by the controller to determine if it has data to transmit. This

polling could be significant for high iteration rate control systems, reducing the available

bandwidth for actual data transfers.

Broadcast buses are typically built using electrical components, such as twisted pair

wire or coaxial cable, with transformer coupling for isolation. Optical devices do not lend

themselves to the construction of broadcast buses. Fiber optics are inherently unidirectional

devices, whereas electrical wires are easily made bidirectional. Typically, multiple fiber

optic splitters/mixers are required to build a broadcast bus with fiber optics. The optical

losses associated with the splitters/mixers become significant for a very small number of

network connections. One of the advantages of the broadcast bus topology is the simplicity

of connecting a station to the network. This advantage is lost when fiber optics are used in

place of electrical components.

The fault tolerance of a simplex broadcast bus is not good. A single station or link fault

can disrupt the entire network. There are few remedies for these situations except to

physically remove the faulty station or fix the broken link.

Some broadcast buses have been designed for fault-tolerance. These designs

incorporate redundancy in the form of spare links, redundant media layers, or both. A bus



with sparelinks built into the network is re¢onfigured by switching in a spare link to

replace a faulty link, regrowing the original bus topology. Redundant media layers are

usually used in an active/standby mode. One layer is used until a fault is detected, at which

point all stations switch over to the secondary layer. The MIL-STD-1553 bus is an example

of a bus with active/standby layers. Alternatively, three or more redundant layers can be

used to transmit redundant copies of data, which are voted upon reception. The AIPS

intercomputer network [CSDL9214] uses both redundant, voted media layers and spare

links to achieve high reliability.

6.3.2. Token Rings

Token ring networks are another common network topology. Token rings are

constructed using electrical components or fiber optics. The inter-station links on a token

ring network are unidirectional, making fiber optics more viable for a token ring system

than for a broadcast bus. A diagram of a simplex token ring network is shown in Figure 6-

2.

station

._> unidirectional link

Figure 6-2. Token Ring Topology

Token ring networks use a token passing protocol for media access control. The

deterministic nature of the token passing protocol makes it suitable for use in real-time

systems.

A single ring network is highly susceptible to interruption from faults. Any single

station or link failure will disrupt the network. Even passive station faults, such as loss of

power, are not tolerated since such failures disrupt the passing of the token. Most token

rings have mechanisms for regenerating a lost token. However, full network functionality

can be regained only by fixing the broken station or link.

ii i
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Tokenpassingprotocolsassumethe ring is contiguous,soring topologiesmust be

reconfigured around faults to enable the tokens and data to make a complete

circumnavigation of the ring. Ring regenerationoptions include chordal rings, dual

counter-rotatingrings,andstationbypass.

Thechordalring approachrequiresredundantlinks which bypass nodes and links on

the primary ring. A fully braided ring, such as that shown in Figure 6-3, can be

implemented for arbitrary reconfigurability, or bypasses can be placed only across nodes

which are expected to fail most often or which are considered non-essential. When a failure

is detected, a redundant link is switched in to replace the broken node or link. The

redundant link re-forms the ring, and network traffic can proceed around the ring

uniilhibited.

1

station

_ primary linksecondary link

Figure 6-3. Fully Braided Chordal Ring

A redundant counter-rotating ring, shown in Figure 6-4, is built with bidirectional links

between each station and the two adjacent stations. The links traversing the ring in one

direction are used as the primary ring, and the links in the other direction make up the

secondary ring. A fault on the primary ring causes all stations to switch over to the

secondary ring. The network can reconfigure around a fault on the secondary ring by

building a loopback ring with pieces of both the primary and the secondary ring. However,

depending on the location of the fault, certain stations may be isolated from other stations

on a loopback ring.
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station

primary link

secondary link

Figure 6-4. Dual Counter-rotating Ring

Station bypass is a mechanism for reconfiguring around passive station faults that

prevent forwarding of tokens or data. Station bypass allows a station to voluntarily bypass

its connection on the ring. The station bypass switch is usually designed so that if a station

is powered down, the network inputs to the station are shunted to the outputs. Station

bypass only works for passive faults since a maliciously failed station will refuse to shunt

the station bypass switch.

6.3.3. Circuit Switched Network

A circuit switched network provides guaranteed bandwidth between any two stations.

Bandwidth is allocated by establishing a connection between two interacting stations. Part

of the connection establishment primitive is a bandwidth request. A fixed percentage of the

bandwidth of an internode network link is aJ_[gcated, either by time or frequency domain

multiplexing, when a connection is established. The network assumes that the transmitting

station will use all of its available bandwidth_ !_fthe connection is under-utilized, the unused

bandwidth is wasted.

A possible topology for a circuit switched network is shown in Figure 6-5. Virtually

any interconnection topology is possible. The number and connectivity of links in the

network varies depending on the expected traffic between each possible pair of nodes.
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Figure 6-5. Example Circuit Switched Topology

The latency of circuit switched networks is very good. Typically, once a connection is

established, the latency imposed by intermediate nodes in the path is minimal. As an

example, a cross-country telephone connection typically has a latency of less than 30ms

[Tan88].

All communications on a circuit switched network must occur within the allotted

bandwidth slot. Thus, a connection must be established before a station can communicate

with any other station. Circuit-switched networks work best with connection-oriented

communication protocols; they do not work well with datagram protocols. A station could

establish connections with all other stations with which it might want to communicate.

However, this action results in a large amount of wasted bandwidth unless communications

are very regular. Alternatively, a station could establish a connection for each desired

communication, transmit the message, and destroy the connection. This procedure would

minimize wasted bandwidth; however, message communication would be delayed by the

overhead of repeated connection/disconnection operations. Also, broadcast and multicast

communications are not possible on a circuit switched network.

Circuit switched networks are typically used in situations where a steady stream of data

must be delivered between distinct points on the network. An example is a signal

distribution network. Digital or analog signals typically have constant bandwidth

requirements, therefore a connection can be established for transmission of a signal without

severe bandwidth wasting. A system with highly irregular bandwidth requirements, such

as a typical data processing system, are unsuitable for circuit switched networks. While a
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real-time system has constant components t0 the network utilization model, these

components are a small part of the total data _unication.

The circuit switched network is easily built with redundant links for enhanced

reliability. Also, the network can be designed so that a node will only affect nodes and

links to which it is directly connected. A node cannot affect another node which is more

than one network hop away. Thus, mutuallY exclusive paths between nodes can be

constructed with a circuit switched networkwithout the necessity of redundant media

layers.

6,3,4, Packet Switched Network

An alternative to static bandwidth allocation in a circuit switched network is to

dynamically allocate bandwidth based on instantaneous network usage. A network using

this method of bandwidth allocation is ca!leda packet switched network. Each packet

arriving at a node is either delivered to a station within the node or forwarded to an output

port on the node. The choice of output port is made based on the eventual destination of the

message and the current utilization of the output ports. The network utilization may vary

widely, so each node must be able to buffer mgssages until the network utilization declines

enough to allow the message to be sent. Because of this property, packet switched

networks are sometimes called store-and-forw__d networks.

Packet switched networks are typically used for wide-area networks (WAN) across

countries or even the entire globe. Wide-area packet switched networks usually provide

interconnections of local-area networks of other topologies such as buses or rings. The

Internet is one well-known example of this type of packet switched network.

The packet switched network has some limitations in local area network applications.

Packet switched networks usually require complex distributed routing algorithms, and each

node must apply the algorithm to each i0coming packet, increasing packet latency.

Broadcasts and multicasts over packet switched networks are difficult, since there is no

convenient way to determine whether or not_ node has received a broadcast or multicast

message. Packet ordering is also a problem if the network uses datagram routing. Because

two packets may follow different routes, the packets may arrive at the destination in the

reverse order that they were transmitted in. Vigu_l circuit routing solves the packet ordering

problem, since all packets are forced to follow the same route. However, virtual circuit

routing requires the establishment of a connection before communication can take place.
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Finally, because of the complexity of a packet switched network, the validation of the

network to guarantee deadlock-free operation is difficult.

Packet switched networks can be built with the same topological freedom afforded

circuit switched networks. Thus, highly reliable packet switched networks can be built with

only a single media layer, provided that there are multiple mutually exclusive paths between

any two nodes on the network.

6,3.5. Fiber Optic Networks

The use of fiber optics for computer networks is becoming increasingly widespread.

Fiber optics provide many advantages over traditional electrical interconnect such as coaxial

cable or twisted pair wire.

The advantages of fiber optics over copper media are numerous. Fiber is not

susceptible to electromagnetic interference (EMI). Also, because the fiber does not radiate

any EMI of its own, it is more resistant to eavesdropping. Fiber provides excellent

electrical isolation between systems, an important property for fault-tolerant systems. The

bandwidth capacity of fiber is considerably higher than coaxial cable, particularly over long

distances.

Most of the disadvantages of fiber optics are related to cost. A point to point

communication link using fiber optics can cost 10 to 50 times as much as a comparable

system using coaxial cable. Building a broadcast bus using fiber optics is difficult because

many fiber optic splitters are required. A simple 4 x 4 fiber optic splitter costs about $500,

whereas a splitter using coaxial cable, a few T-splitters, and BNC connectors costs about

$10. An electrical connection can be shunted using a simple relay from Radio Shack, but an

optical bypass switch is very expensive.

6.3.6. Authentication Protocols

The solution to the Byzantine Generals Problem [LSP82] prescribes a method, called

source congruency, for guaranteeing that data delivered to each member of a redundant

processing site, or fault-masking group (FMG), is always in agreement, even in the

presence of a single random fault of arbitrary behavior. Additionally, the source

congruency guarantees that, if the original source of the data is non-faulty, the data

delivered to each member of the FMG is valid. Traditional implementations of the source

congruency algorithm use at least three unsigned copies of a message exchanged in a two
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roundexchangepatternto providesufficient redundancyin theeventof a single random

fault.

An alternative to the source congruency algorithm using triplicated unsigned messages

is to attach a signature to each message. For a source congruency algorithm using signed

messages, the following conditions must be Satisfied:

• A faulty node can not interfere with _e communication between two other nodes,
unless the communication path involves the faulty node.

• The receiver of a message knows wh_ sent it.

• The absence of a message can be detected.

• Any alteration of the message can be detected.

• The signature of a functioning station cannot be forged.

• Any node can verify the authenticity of a signature.

When a node receives a message, it checks the authenticity of the signature. If the

signature is valid, the node assumes that the contents of the message are the contents the

sender intended. Thus, interference by intermediate nodes is ruled out. If an intermediate

node corrupts the content of the message, the receiving node would detect the corruption

and declare the signature invalid. ..........

The message signature can either be message specific or non-message specific.

Traditional signed paper documents, such as checks, wills, or contracts, use a non-

message specific signature. Non-message specific signatures assume that the exact pattern

of the signature is difficult to duplicate. Any attempt to duplicate the signature by tracing,

photocopying, etc. is easily detected. However, in a computer system, any bit stream is

easily copied. A system need only contain enough memory to store the signature stream to

be able to reproduce the signature pattern. The nature of computer systems prevents this

signature copy from being distinguished from the original.

The solution to the signature copying problem is to use message specific signatures. A

signature is calculated as a function of the message. Thus, each message has a different

signature attached to it. To verify the signature, the receiving node applies another function

to the message to determine if the signature is valid.

The functions used to generate and authenticate the signature must be chosen to

minimize the likelihcxxl of a successful forgery attempt. Ideally, no node except the sending

node should know how the signature was generated. The receiving node should be able to
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test the authenticity of the signature without requiring knowledge of the signature

generation.

Functions with the properties described above can be found in the field of public key

cryptography. Public key cryptography uses two functions, E0 and D0. E0 is a public

encryption function, of which everyone has knowledge. The decryption function, D0, is

private and known only to the receiver. The function D0 cannot be easily deduced from

knowledge of E0. Anyone can encrypt a message using E0, but only the intended receiver

can decrypt an encrypted message. Thus, an intercepted message cannot be decoded by an

unauthorized station. The encryption/decryption function pairs have the property:

D(E(M)) = M

For authentication protocols, a slightly different operation is needed. The source station

keeps the private key to generate signatures, and the destination stations use the public key

to test the authenticity of the signature. The source must keep the private key so that no

other station can forge a signature, and the destinations must have the public key so that

any one of them can verify the authenticity of a signature. Note that the message itself is not

necessarily encrypted for authentication protocols; if such encryption is desired, another

private/public key pair can be used as described above. However, the keys for encryption

and the keys for authentication are distinct.

Since the private key is applied before the public key, only isomorphic function pairs,

with the following property, are suitable for use in authentication protocols:

E(D(M)) = M

The signature for a message is generated by applying D0, the private key function, to

the original message. Then the message and the signature are transmitted to the receiving

node. The receiver applies E0, the public key function, to the signature, and if the result

matches the original message, the signature is valid.

In practice, a signature calculated from the message using the procedure outlined above

is extremely unwieldy. The signature, D(M), is at least as long as the original message, M,

since M can be regenerated from it. Thus, half of the communication bandwidth is

consumed by the signature transmission. However, the signature does not have to be the

same length as the message. For the AFTA project, a fixed length signature of 64 bits is

sufficient to meet the reliability requirements [Gal90]. A system using fixed length
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signatures requires a common function, CO, to be applied to the message. The sender

generates the signature by applying the following:

S = D(C(M))

The receivervalidates the signature by applying the following test:

C(M) E(S)

A possible implementation of the common function is the cyclic redundancy check

(CRC) function. The CRC is widely used as an error detecting code for data

communication. The detection of random, _bitrarily behaved errors with CRCs is very

good, thus an authentication protocol that uses CRCs for error detection is reasonably

secure against forgery. In addition, the CRC function can be tailored to detect some

expected error patterns, such as burst errors or double-bit errors.

One possibility for the public/private key functions is a system using modular inverses.

Modular inverses have the following prope_T

M "2"N = 1

where M and N are both 64 bit integers_ Modular inverses are similar to multiplicative

inverses in the set of real numbers, except that modulo multiplication is used instead of

arithmetic multiplication. The modular inverse scheme is not cryptographically secure,

since the calculation of modular inverses _is relatively straightforward for a human

cryptographic expert. However, the reasonable assumption is made that a station will not

fail in a manner that turns it into a cryptographic expert with the ability to calculate modular

inverses.

The signature generation and authentication procedures would be as follows: the sender

multiplies the 64 bit CRC by the 64 bit private key integer using modulo-64 multiplication,

yielding another 64 bit number which becomes the signature. The receiver regenerates the

CRC by multiplying the 64 bit signature by the public key, the 64 bit modular inverse of

the private key. This CRC is compared by the i'eceiver with a locally generated CRC on the

received message to test the authenticity of the signature.

Message specific signatures, such as those described above, prevent a node from

saving another node's signature for use in forging a new message. However, an

intermediate node can save and retransmit the message itself, complete with valid signature.

The receiving node must be able to distinguish between bogus copies of a message from a
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brokenintermediatenodeandlegitimaterepetitionsof themessagefrom theoriginalsource.

A solutionto thisproblemis to forcethemessageto containaknownvaryingcomponent.

Evenarepeatedmessagefrom thesamenodewill neverbeexactly identical to previous

copies.An exampleof a varying componentis a sequencenumber.A receiving node

knows what sequencenumbershouldbecontainedin the next messagefrom a source

node.If a messagearrivesfrom anodewith an incorrectsequencenumber,thereceiving

noderejectsthemessageaserroneous.

6.4. Existing and Proposed Standards

This section describes several networking standards, both existing and proposed, that

are of interest. Many of these standards are designed for application in real-time military

systems. Since the FTDB is targeted for military systems, these standards may have a great

influence on the acceptance of the FTDB.

Each standard defines certain aspects of a local-area network for real-time applications.

The scope of each standard varies. Some standards only define the physical and data link

layers. Other standards define a complete end-to-end communication system with a fully

specified protocol stack.

None of the standards presented below, with the exception of the AIPS IC network,

will survive Byzantine faults without modification. However, most of these standards were

developed with real-time system applications in mind. Thus, some of the techniques

specified in these standards can be applied to the fault-tolerant data bus design.

6.4.1. AIPS lntercomputer Network

The Advanced Information Processing System (AIPS) developed at the Charles Stark

Draper Laboratory |CSDL9214] includes the definition of an intercomputer, or IC,

network. The IC network is designed to interconnect simplex, duplex, triplex, and

quadruplex AIPS processing sites. The fault-masking processing sites and the IC network

are designed to be Byzantine resilient.

A diagram of the AIPS IC network is shown in Figure 6-6. The network consists of

three identical layers. Each layer is totally isolated from the other layers. Each member of a

processing site only transmits on one layer, although it receives from all three layers. There

is no cross-strapping between the layers except within a redundant processing site and on

delivery of data from the network to a processing site (the latter is not shown in Figure 6-6
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for clarity). Each layer forms a broadcast bus with media access controlled

deterministic bus arbitration mechanism.

al " iI

_1 |r,p|ex |r'plex I

.,up,°x - - - "- I

by a

primary link 0 network node

secondary link _ processing site member

Figure 6-6. AIPS IC Network

Although the IC network acts as a broadcast bus, the network is actually implemented

as a set of point to point links. Each layer contains more than enough links to form a bus to

interconnect all nodes. The network manager selects a subset of the interconnecting links to

form a bus. The remaining links in the layer_ unused until a fault is detected, at which

time the network manager switches in a redundant link to replace the failed link. The

network configuration established by the network manager is not changed unless a fault is

detected.

The AIPS IC network uses a media access _scheme called the Laning poll [CSDL9214]

to control access to the bus. The Laning p011 guarantees that all members of a station

contending for the network deterministically obtain or relinquish the bus. Each station is

assigned a unique priority number which is used during bus arbitration to request access to

the bus. The requesting station with the highest priority number obtains the bus.

6.4.2. SAVA High-Speed Data Bus

The Standard Army Vetronics Architecture (SAVA) defines a high-speed data bus

(HSDB, not to be confused with JIAWG HSDB) for interconnection of computing sites

within the SAVA architecture. The SAVA architecture is designed for implementation

inside ground vehicles, particularly battlefield vehicles such as tanks.

The current draft standard for the SAVA HSDB is [MIL-STD-344]. Lt this time, [MIL-

STD-344] is still under development. Some of the characteristics discussed in this section

were inferred from data in the draft standard and may be incorrect. The SAVA HSDB draft

Page 6-21



specificationdefinesonly the physical and data link layers of the ISO/OSI protocol model.

No mention is made in [MIL-STD-344] of any layers above the data link layer.

The SAvA H-SDB allows interconnectionof up to 32 nodes on a single physical LAN.

The network uses transformer coupling to a twinaxial cable bused throughout the vehicle.

A 12 MHz signaling rate using Manchester encoding is used to transmit data on the bus,

thus an effective data exchange rate of 6 Mbits/sec is realized.

Access to the media is controlled by a token passing protocol. Tokens are not really

captured for any length of time. Instead, a station can transmit on the bus only after a token

is received, and the token is transmitted immediately following the message. Thus, each

station is only allowed to transmit one packet per token reception.

Network fault-tolerance is specified by a dual-layer network. Each station is connected

to both layers, thus the SAVA HSDB will not tolerate Byzantine faults without additional

isolation between media layers. Stations are equipped with media bypass so that passive

station faults can be tolerated.

6.4.3. JIAWG High-Speed Data Bus

The Joint Integrated Avionics Working Group (IIAWG) defines a high-speed data bus

(HSDB) for interconnecting modules within the advanced avionics architecture (A3). The

A3 architecture is targeted for application in the advanced tactical fighter (ATF), the

advanced tactical aircraft (ATA) (cancelled), and the light helicopter (LHX) [J8701].

The current draft standard for the JIAWG HSDB is [J88N2]. At this time, [J88N2] is

still under development. Some of the characteristics discussed in this section were inferred

from data in the draft standard and may be incorrect. The JIAWG HSDB draft specification

defines only the physical and data link layers of the ISO/OSI protocol model. No mention

is made in IJ88N2] of any layers above the data link layer.

The JIAWG HSDB uses an optical bus topology with token passing media access

control. A virtual ring network is superimposed on the physical bus topology. The network

uses Manchester encoding, so a maximum data transfer rate of 50Mbits/sec is obtained

using a 100MHz signaling rate.

The JIAWG HSDB provides for network fault-tolerance by specifying dual redundant

buses. While the HSDB as defined in [J88N2] does not describe the network topology, it
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is highly likely thatthedualbusesarenotsumcientlyisolatedfor Byzantineresilience.Past
experienceindicatesthat unlessa designspecifically addressesthe issueof Byzantine

resilience(which JIAWG doesnot), thedesigncannotsurvive Byzantinefaults without
additionalredundancy.

TheJIAWG specification[J88N2]doesnot describehow to constructabroadcastbus

usingfiber optics.

6.4.4. Fiber Distributed Data Interface (FDDI)

The fiber distributed data interface (FDDI) was developed by the American National

Standards Institute (ANSI) to satisfy increasing demands for high bandwidth local-area

networks. The FDDI standard is gaining momentum as the next generation local-area

network topology, complementing the current popular choice, Ethernet. FDDI is also

recognized by the International Standards _anization (ISO) as a protocol for open system

interconnect (OSI). FDDI is currently defined by three American National Standards,

[ANSI139], [ANSI148], [ANSI166], and one draft standard, [X3T95]. Most FDDI

implementations also use the logical link control specified by [IEEE8022].

FDDI defines two counter-rotating rings, a primary ring and a secondary ring. The

primary ring is used unless a fault is detected, in which case the secondary ring may carry

all or part of the network traffic. The two rings both connect to a single network interface.

The dual ring design of FDDI allows reconfiguration around detected faults. However,

because the two rings share a network interface, additional redundancy is required for

Byzantine resilience.

The media access control in FDDI is managed by a token passing protocol. The token

passing system guarantees a bounded latency for interstation communications. The FDDI

token passing system defines synchronous and asynchronous bandwidth allocation.

Synchronous bandwidth allocation is guaranteed to each station. Asynchronous bandwidth

is taken from whatever is left over after al! synchronous messages have been transmitted.

The inclusion of synchronous bandwidth makes FDDI ideal for real-time systems where

bounded, deterministic network response is necessary.

The specification of FDDI is divided into four major sections, corresponding to each of

the four accepted and draft standards. These sections are the physical layer protocol, the

physical medium-dependent layer, media access control, and station management.
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The physical layer protocol (PHY) and physical medium-dependent layer (PMD) make

up the ISO/OSI physical layer. The physical medium-dependent layer defines the hardware

of the FDDI network, such as light wavelength, fiber diameter, cable plant dimensions, and

optical transceiver characteristics. Physical characteristics not directly affecting

interoperability, such as fiber sheathing, are not defined by PMD. The physical layer

protocol defines the medium independent characteristics of the FDDI network. The scope

of the PHY standard includes coding, symbol set, signaling protocol, and clock

synchronization.

The media access control (MAC) and station management (SMT) reside in the data link

layer of the ISO/OSI model. The media access control specification defines the token

passing protocol with synchronous and asynchronous bandwidth, station physical, logical,

and broadcast addressing, packet formats, and network initialization. The station

management includes provisions for network configuration management, fault isolation and

recovery, ring scheduling procedures, and station initialization.

An FDDI implementation also requires a logical link control (LLC) protocol. The LLC

is responsible for delivering packets, or Protocol Data Units (PDU), to the appropriate

higher level protocol stack. The current definition of FDDI in the four ANSI standards does

not specify a logical link control. However, by convention, most FDDI implementations

use the IEEE LLC [IEEES022]. This LLC provides for delivery of packets between service

access points (SAP). A source LLC specifies a SAP to which the LLC on the destination is

to deliver the packet. The destination SAP usually specifies a protocol stack.

Administration of SAPs is global, so that all systems using the IEEE LLC will properly

recognize or ignore packets as they arrive at the station.

FDDI has been studied for use in other real-time systems, with the conclusion that real-

time systems requirements can be met [Coh87I.

6.4.5. SAFENET II

The Survivable Adaptable Fiber Optic Embedded Network, or SAFENET, is being

developed by the Navy to satisfy intercomputer communications requirements for

shipboard, aircraft, and ground-based systems. The current draft standard for SAFENET II

is IMIL-HDBK-00361. SAFENET II is intended to meet the needs of both i.-,teractive and

real-time systems. The SAFENET II defines a complete end-to-end local-area network. The
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entireISO/OSI protocol stack, from the physical layer to the presentation layer, is defined

by SAFENET II.

The design of SAFENET II is based on the FDDI specification. SAFENET II defines a

new physical medium dependent (PMD) layer using militarized components. Each station is

connected to the medium by a trunk coupling unit (TCU). The TCU contains an optical

bypass switch with which a station can voluntarily bypass itself on the network. The TCUs

are interconnected by fiber optic cable. All fi_r optic cable junctions are constructed using

fiber optic splices, except for station connections. A network station is allowed to connect

to its TCU using a militarized fiber optic conn_tor.

A station may connect to either one (single attach) or two (dual attach) of the SAFENET

II rings. Since a station, consisting of one fault-containment region, may connect to both

rings, the dual ring design is not sufficiently isolated to tolerate Byzantine faults. A dual

attach station may listen on only one of the rings at a time. One ring is designated the

primary ring, and is used until a fau.lt is det_ted. Upon fault detection, all dual attach
L .................

stations switch over to the secondary ring. If a fault is detected in the secondary ring, a new

ring may be constructed using segments of the two original rings. All station bypass and

ring reconfiguration operations assume that no Byzantine faults have occurred.

The SAFENET II specification also defines _e higher layers of the protocol stack. Two

protocol suites are specified: an OSI compliant protocol suite based on the Manufacturing

Automation Protocol (MAP) and a lightweightprotocol suite based on the Xpress Transfer

Protocol ® (XTP ®) [PEI90120]. A SAFENETii station may implement either or both of

these protocol suites.

6.4.6, $_,lnlm_ry_

Table 6-1 below summarizes the differences between the various physical and data link

protocols discussed above. Several interestingconclusions arise from this table. First, most

of the systems outlined use token passing media access control, suggesting that such a

media access scheme is optimal for real-time systems. Also, all systems consider

redundancy to enhance system reliability. However, only the AIPS IC network defines

sufficiently isolated redundant network layers to tolerate Byzantine faults. Finally, the

FDDl-based systems provide the highest bandwidth of any of the systems investigated.

The nearest competitor is the JIAWG HSDB, which has only 50% of the FDDI bandwidth.
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StandarclFDDI
Characteristic\
topology
mediaaccess
control
signalingrate
datarate
ignaiingmethod

! _hysicalmedium
reconfiguration
mechanism

SAFENETII

dual ring T"
token

passing
125MHz

100Mbits/sec

4B/5B/NRZI

fiber optics
dual rings,
bypass

Table 6-1.

Ifl_l

dual ring
token

passing
125MHz

100Mbits/sec
4B/5B/NRZi

fiber optics

dual rings,
bypass

JIAWG
HSDB

dual bus

token

passing
100MHz

50Mbits/sec

Manchester

fiber optics
dual buses

SAVA
HSDB

dual bus
token

passing
12MHz

6Mbits/sec
Manchester

twinax cable

dual buses,

bypass

AIPS IC

triplex bus
Laning poll

2MHz

2Mbits/sec

HDLC

coaxial cable
redundant
links

Comparison of Standards

These conclusions direct attention toward FDDI as an excellent candidate for use in the

FTDB. The throughput of FDDI is higher than any other system investigated. Since FDDI

uses fiber optics, inter-node isolation is excellent. The token passing media access for

FDDI ensures deterministic bus access for real-time tasks. While FDDI does not provide

sufficient isolation between its dual rings, additional redundancy in the form of multiple

FDDI networks can be used to provide the necessary isolation. Finally, the FDDI standard

itself is very stable. Several of the other standards, particularly JIAWG HSDB and SAVA

HSDB, are very preliminary and implementation details are very sketchy. Neither of these

systems is adequately specified in the current version of the standard to construct a working

system. The FDDI standards, on the other hand, have been accepted by both ANSI and

ISO (with the exception of the station management standard, which is in the final stages of

acceptance), and working systems employing FDDI are available as off-the-shelf items.

6.5. FTDB Brassboard Design Proposal

This section describes the conceptual design for the AFTA fault-tolerant data bus. The

brassboard FTDB design will be constructed as described by the FTDB brassboard

development phm.

The FTDB design is based on the ISO/OSI model for data communications [Bla91].

The ISO/OSI model of the FTDB is shown in Figure 6-7. Only the lower four layers are

described by the conceptual design; specifications for the upper layers are currently beyond

the scope of the FTDB.

The physical and data link layers are based on the FDDI physical and data link layers.

The network layer protocols are designed to handle the redundancy management and

message authentication necessary to support Byzantine resilience. The transport layer
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protocolsprovide severaldifferent data m_els for inter-processor communication. The

transport protocols are integrated with the AF_A Ada run-time system. All redundancy

management issues are hidden from the user by the transport and network protocols.

Level 6-Presentation

Level 5-Session

Level 4-Transport

Level 3-Network

Level 2-Data Link

Level 1-Physical

I[ Services ] Periodic Network Asynchronous [ Network IB

I TransactionI Datagram Diagnos_ Oatagram I _t,s_, I!1
I Protocol I Protocol Protocol Protocol I Protocol I !i

STP POP .NDP___ ADP NDSP

Protocol [=_ Network Protocol I=1 Protocol M

FDDI Media Access Conlrol MAC

i FDDI Station I-

[ FDDI Physical Layer PHY Manag=ement H
I - _---l'---'_ "" !1

FDDi " OTS I I SAFENETII !1

Figure 6-7. ISO/OSI Model of FTDB

The physical and data link layers are designed around the ANSI specifications for FDDI

and the IEEE logical link control standard. The FDDI standard is rapidly gaining

momentum as the next generation local-area network. Many existing network standards,

such as MIL-STD-1553 and Ethernet, are widely used and well established, but the

technological state-of-the-art is making these systems obsolete. Exotic technologies like

gallium-arsenide (GaAs) make very high throughput (above 1 Gbit/sec) communication
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possible;however,suchtechnologyis very newand standardsbasedon this technology

have not yet beenestablished.The FDDI standards,at 100 Mbits/sec, representan

appropriatebalancebetweenhightechnologyandstandardization.

FDDI containsmany featuresthat are useful for real-time fault-tolerant systems,

including high raw bandwidth,low latency,deterministictokenpassingmediaaccess,

synchronousandasynchronousbandwidth,andnetworkfaultdetectionandrecovery.

The 125 MHz signaling rate and the 4B/5B code with NRZI signaling of FDDI
providesa raw bandwidthof 100Mbits/sec,higher thanother establishedstandardsin

eitherthecommercialor themilitary sector.A maximallyconfiguredFDDI network,with

1000stationsand 200 km of cabling, hasa ring latency of 1.617ms. A network of

reasonablesizefor embeddedapplications,with 100stationsand 10km of cabling,hasa

ring latencyof 0.111ms,slightlyover 1%of thenominalAFTA run-timesystemiteration

rate. Token acquisition latency for synchronousda_awill be no larger than 8.0 ms; a

smallervaluemaybeestablishedatring initializationtime.

The token passingmediaaccesscontrol guaranteesaccessto the network by each

stationwithin apredeterminedtime period.Eachstationusesatokenholdingtimer (THT)

to limit theamountof timethestationtransmitson thenetwork.A properly designed station

will release the token when the THT expires. A station which does not relinquish the token

after the THT expires is faulty.

The token passing protocol in FDDI is also designed to handle synchronous and

asynchronous bandwidth. Synchronous bandwidth is allocated statically for each station

and is guaranteed. Allocation of synchronous bandwidth is done in a manner to ensure that

the total synchronous bandwidth does not exceed the maximum practical bandwidth

capacity of the physical link. After all stations have transmitted synchronous data, any

bandwidth left over is available for asynchronous bandwidth.

An FDDI network is constructed using either a single ring or a dual, counter-rotating

ring configuration. The dual ring design provides some degree of fault-tolerance to the

network. One ring in the dual ring configuration is deemed the primary ring and the other

ring is the secondary ring. The primary ring is used unless a fault is detected, at which

point all stations switch over to the secondary ring. An additional fault on the secondary

ring can sometimes be tolerated by connecting segments of the two rings into a new

configuration.
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Eachnetworkinterface unit on an FDDI network is either a single attach or a dual attach

station. Single attach stations are only connoted to the primary ring, whereas dual attach

stations connect to both rings. Dual attach stations only listen on one ring at a time. Since

dual attach stations connect to both rings, a single malicious fault in a network interface unit

can interrupt communications on both rings simultaneously. Thus, the dual ring FDDI

configuration is not sufficient alone to provide Byzantine resilience.

An FTDB implementation utilizing FDDI requires at least two distinct FDDI networks

for Byzantine resilience. Each network, henceforth referred to as a media layer, is used to

transmit a packet copy between stations. Stations are connected to the dual media layers in a

manner that prevents any single fault within a fault containment region from disrupting

more than one media layer. Each media layer is either a single or a dual FDDI ring.

An FTDB implementation using dual, counter-rotating FDDI rings uses the secondary

rings to reconfigure around diagnosed passive faults. Note that even an implementation

using single FDDI rings is Byzantine resilient:

A diagram of the FTDB architecture is shown in Figure 6-8. The FTDB supports

stations of simplex and fault-masking (triplex or quadruplex) redundancy levels. The

FTDB protocols guarantee agreement on data _nsmitted from a simplex to a fault-masking

group. Validity is guaranteed if the simplex source is functional. The FTDB also guarantees

agreement and validity on data transmitted between fault-masking groups.
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Figure 6-8. FTDB Architecture

The FTDB is built around two FDDI media layers to provide reliable communication

between network stations. Each media layer is physically and electrically isolated from the

other layer and from all network station members; thus a single failure in the system will

disrupt at most one media layer and will not disrupt any station member. A media layer may

be either a single or a dual FDDI ring.

All stations are connected to the network using one of the interface architectures shown

in Figure 6-8. All stations must provide a network interface unit (NIU) to each of the two

redundant media layers. Each NIU must reside in a separate fault-containment region to

ensure Byzantine resilience.
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The steps taken by a message as it is transferred through the FTDB are described

below. These steps are illustrated for a source consisting of a triplex AFTA Virtual Group

sending a message to a destination consisting of an arbitrary triplex processing site. The

AFTA Virtual Groups view the interface to the FTDB as simply another type of I/O

Controller, and use the I/O message exchange primitives enumerated in Section 3. To

illustrate the linkage between the AFTA and the VI'DB, Figure 6-9 is a redrawing of Figure

3.43, showing how triply redundant VG T1 simultaneously writes voted output data to

multiple IOCs, which in this case are the Signer/Checker (S/C) components of the FTDB.

NE 0

Figure 6-9. Triply Redundant VG T1 Simultaneously Writes Output Data to

Signer/Checker Components of Fault Tolerant Data Bus

Step 1, Figure 6-10. Data transmitted from the station to the network passes through a

message signer. The signer is in the same FCR as the data source. The signer attaches a

sequence number and an authentication signature to the packet.
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Figure 6-10. Step 1 of FTDB Message Transfer

Step 2, Figure 6-11. After the authentication information is attached to the packet, the

packet is transmitted to the network interface units. In the case of an FMG, the redundant

copies of the packet are transmitted to the FTDB interfaces, each of which votes the three

copies to prcxluce two redundant, signed packets.
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Figure 6-11. Step 2 of FTDB Message Transfer

Step 3, Figure 6-12. Each packet is then transmitted over the dual FTDB media layers

to the appropriate receiver station.
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Figure 6-12. Step 3 of FTDB Message Transfer

Step 4, Figure 6-13. The receiving FTDBNIUS transmit the received packet copies to

the signature authenticator stage of the receivifig station. The authenticator stage nominally

receives two copies of each packet, one fforh_ach media layer. One copy is guaranteed to

be correct in the presence of any single fault in the network.
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Figure 6-13. Step 4 of FTDB Message Transfer

Step 5, Figure 6-14. The authentication stage checks the sequence number and the

signature on the packet to make sure the packet is valid. Both the sequence number test and

the signature authentication test must succeed for the packet to be considered valid. If both

packet copies available at a given checker pass both tests, either copy may be selected as
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valid by the receiving member of the desination triplex processing site. If neither copy

passes both tests, the packets are discarded and the fault information is recorded in the

network diagnostic log. Subsequently, the received packets and fault information may be

exchanged using one of the standard A_TA I/O exchange primitives enumerated in Section

3. The specific exchange primitive used will depend on the redundancy level of the

recipient VG and the number of FTDB interfaces that VG possesses.
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Figure 6-14. Step 5 of FTDB Message Transfer

6,5, !. Physical Laygr

The physical layer of the FTDB is based on the specifications for the Fiber Distributed

Data Interface, or FDDI. The physical layer specification in the FTDB is divided into two

major segments. The physical layer protocol defines the data and control signaling and

clock recovery. The physical layer medium dependent describes the actual electrical and

optical hardware used to implement the inter-station communication link.

6.5. I. 1. ..Ehysical Layer Protocol

The physical layer protocol (PHY) for FTDB is described in [ANSI148]. The data is

encoded using a 4B/5B code to maintain a DC balance on the output waveform. The code

also ensures that the serial data stream will contain no more than three adjacent zero

symbols. This property assists the clock recovery circuitry by providing enough transitions

to derive the clock from the incoming data stream. The stream of 5 bit codes is converted

into an NRZI serial data stream for transmission over the serial medium.
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Theuseof the 4B/5B code makes better Use of the media bandwidth than Manchester

encoding. For example, the raw bandwidth of the FDDI medium is 125 Mbaud. Using

4B/5B encoding, a data rate of 100Mbits/sec is obtained. Using Manchester encoding, only

62.5Mbits/sec would be available. The 4B/5B coding requires a more sophisticated clock

recovery circuit and more accurate oscillators than Manchester encoding. However,

oscillators satisfying the 50 ppm specification for FDDI are widely available, as are

monolithic integrated circuits to perform the clock recovery [AMD89a].

6.5.1.2. Physical Layer Medium Dependent

The FDDI physical layer medium dependent (PMD) standard [ANSI166] defines the

physical medium to be used for the data communication channel. The standard includes

specifications for fiber-optic type, fiber-optic-diameter, light wavelength, transmitter type,

receiver type, and connector dimensions, These specifications are either necessary to

achieve the 125MHz signalling frequency or to ensure compatibility between stations on an

FDDI network.

Other medium dependent specifications can be used to replace the FDDI PMD,

provided that the replacement specification is compatible with the rest of the FDDI

specification. Two examples of alternate medium dependent specifications are the

Militarized Fiber-Optic Transmission System specified by FDDN [Coh88] and the

SAFENET II media dependent layer IMIL-HDBK-0036]. Each of these specifications

defines militarized components not considered by the FDDI PMD specification. However,

both are compatible with the remainder of the FDDI specification.

The modularity of the FDDI PMD permits the substitution of different physical medium

dependent layers on a per-network basis. Thus, a militarized b-TDB network can be

constructed by simply replacing electrical components with their military equivalents, and

replacing the PMD layer with a militarized medium dependent layer, such as one of the two

examples presented above.

6.5.2. Data Link Layer

The data link layer of the FTDB is basedon the FDDI data link layer standard and the

IEEE standard for logical link control. The FDDI media access control arbitrates access to

the physical network. The FDDI station management protocol provides a set of primitives

for maintaining the processes in the physical and data link layers. The IEEE logical link
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control (LLC) maintains the link between the physical layer and the network layer

protocols, and provides peer-to-peer communication with other LLC entities on the FTDB.

6.5.2.1. Media Access Control

The media access control (MAC) for the FTDB is defined in the FDDI standard

[ANSI139]. The FDDI MAC is based on a token passing protocol. Token passing exhibits

many characteristics desirable for real-time systems, including guaranteed deterministic,

low latency data transmission and the ability to schedule synchronous data exchanges.

Deterministic token rotation is guaranteed using a token rotation timer (TRT). The TRT

is initialized during a bidding process. Each station on the network broadcasts a desired

maximum token rotation time. If the station receives a request for a TRT less than what the

station requested, the station drops out of the bidding. If the received TRT request is

greater than that the station requested, the station ignores the request and continues the

bidding process. The last station in the bidding selects the local TRT request and broadcasts

it to all other stations as the target token rotation time (TTRT). The bidding process ensures

that the shortest TRT request is used for the TTRT.

The TTRT is used during normal data transmission to prevent a station from

monopolizing the network. A token that arrives before the TrRT is an early token and can

be used to transmit either synchronous or asynchronous data. A token that arrives after the

TTRT is a late token and can be used only to transmit synchronous data. Synchronous

bandwidth is allocated such that all synchronous data is guaranteed to fit within one T'I'RT.

Each station should normally have an opportunity to transmit every token rotation time.

Access to the network is guaranteed within two target token rotation times.

The MAC specification also defines the station addressing protocol. FDDI station

addresses are categorized by three characteristics as outlined below.

• Physical, logical, or broadcast. Only one station listens on a physical address.
Multiple stations may listen on a logical address. A station may listen on more
than one logical address. All stations listen on the broadcast address.

• Universal or local _tdministration. Universally administered addresses are

assigned by a single authority and are guaranteed to be unique throughout the
world. Locally administered addresses are assigned by the manager of the local
network. The local manager is responsible for preventing local address conflicts.

• Length. FDDI addresses are either 16 bits (short address) or 48 bits (long
address) in length. Only long addresses can be universally administered.
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6.5.2.2. Station Management

The station management of an FTDB station is defined by the station management

(SMT) standard for FDDI [X3T95]. The SMT controls various processes in an F'Iq)B

node, including station insertion and removal, initialization, fault detection, isolation and

recovery, ring bandwidth allocation and scheduling, and configuration management.

Although included with the data link layer in this discussion, SMT actually controls the

local PMD and PHY entities in the physical layer as well as the MAC entity in the data link

layer. ................

6.5.2.3. Logical Link Control

The FTDB logical link control (LLC) protocol conforms to the LLC defined in

[IEEE8022] and [IEEE8021 ]. The IEEE LLC is not a part of the FDDI specification, but

most FDDI implementations (including SAFENET II installations) use this LLC by

convention. Conformance to the IEEE standard ensures compatibility with other FDDI

stations using the same FDDI media.

The LLC defines service access points (SAPs) which specify the location to which the

LLC delivers incoming packets. The destination SAP (DSAP) usually indicates a network

layer protocol stack. Most SAPs are reserved by IEEE for use by public protocols.

However, the LLC reserves one SAP for usein a protocol extention, known as the sub-

network access protocol (SNAP), for private protocols. Since the Byzantine resilient

network protocol of the FTDB is considered a private protocol, the FTDB LLC uses the

SNAP extention to distinguish BRNP packets from other types of packets.

The LLC defines both datagram (Type !) and connection-oriented (Type 2)

communication between SAPs. Implementation of Type 1 is required, whereas Type 2

functionality is optional. The FTDB only requires Type 1 capabilities, since the BRNP is

designed around datagram protocols. However, the FTDB may optionally include Type 2

capabilities if a protocol stack that requires Type 2 capabilities is developed for the FTDB.

6.5.3. Network Layer

The network layer protocols are responsible for fulfilling station requests for message

transmission, address resolution, message authentication, and message delivery to stations.
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6_5.3.1. Byzantine Resilient Network Protocol (BRNPI

The Byzantine resilient network protocol implements the Byzantine Resilient Virtual

Circuit (BRVC) model [Har87]. The BRVC model guarantees delivery of all messages

transmitted by BRNP. Most existing network layer protocols, IP, for instance, are best-

effort systems that make no guarantees about message delivery; the transport layer

protocols are responsible for providing reliable communication through retry mechanisms.

However, retry mechanisms can be fooled by Byzantine faults [Ber87]. Therefore, true

Byzantine resilience can not be implemented unless the underlying network layer protocol

supports Byzantine resilience through redundancy and/or message authentication.

BRNP supports communication between stations of varying redundancy levels. The

three redundancy levels of the AFTA (simplex, triplex, and quadruplex) are currently

supported. BRNP guarantees agreement on data transmitted from a simplex to a fault-

masking group. Validity is guaranteed if the simplex source is functional. The FTDB also

guarantees validity on data transmitted between fault-masking groups.

BRNP supports synchronous and asynchronous bandwidth. Synchronous data will

always pre-empt asynchronous data in the output queue. The token passing media access

control of FDDI supports this model well. This data model blends well with the AFTA run-

time system model of synchronous (rate-group) and asynchronous (background) tasks.

Data link and physical layers connected to BRNP must provide at least two connections

to the media layers they represent. These two connections must be ports into mutually

exclusive paths to all other stations that support BRNP. The mutually exclusive paths are

required so that BRNP can transmit two packet copies that traverse the network with no

interconnecting link or node in common. If the packet copies were to pass through the same

link or node, the FTDB would be susceptible to single point failures.

The transmitting BRNP entity receives message transmit requests from the transport

layer protocols in the station. The transmitting entity communicates with the peer BRNP

entity on the receiving station over the redundant FTDB communication links. The message

received from the transport layer is inserted into a BRNP packet with a sequence number

and a signature from the authentication protocol. The BRNP packet is then delivered to the

LLC entity in the station, which transmits a copy of the packet over each of the dual FTDB

media layers to the receiving station.
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The receiving BRNP entity is responsib!e for resolving the multiple packet copies

arriving over the two media layers into a single copy to be delivered to the transport layer.

The two media layers are not bitwise or token synchronized. However, the maximum

latency of a packet on the physical layer is bounded by the token rotation timer. This

characteristic is used by the receiving BRNPentity to maintain functional synchronization

of the two media layers.

When BRNP receives a packet, the sequence number is checked to see if the other copy

of the packet has already arrived. If so, the packet is treated as the second copy, otherwise

the packet is treated as the first copy. The packet is processed by ATP to determine the

validity of the sequence number and the signature. The results of the validation test are

ANDed together to create a packet status bit (PSB). A fault masking station performs a

source congruency on the PSB of each member to generate a packet status vector (PSV).

The PSV for the first packet copy is treated using the following protocol:

• If no members receive a valid pack&, the packet is discarded.

• If a minority of members receive a valid packet, a timeout equal to 2 times the
TIRT is started. If the second packet copy does not arrive before the timeout
expires, the packet is discarded.

• If a majority of members receive a valid packet, a time.out equal to 2 times the
TI'RT is started. If the second packet copy does not arrive before the timeout
expires, the packet is delivered and the sequence number is incremented.

• If a unanimity of members receive a valid packet, the packet is delivered and the
sequence number is incremented.

The PSV for the second packet copy is pr0cessed using the following protocol:

• If a minority or no members receive a valid packet, both copies of the packet are
discarded.

• If a majority or a unanimity of members receive a valid packet, the second copy of
the packet is delivered and the sequence number is incremented.

The protocol outlined above ensures the earliest delivery of valid packets to their

destination while still guaranteeing correct behavior in the presence of a single Byzantine

fault. One interesting characteristic is that if the first packet is valid on all receiving station

members, that copy will be delivered immediately and the second packet copy will be

discarded as invalid since the sequence number is incremented on delivery. Another

characteristic is that the network peer-to-peer latency is no worse than for a simplex

physical layer, whether or not faults are present. In a fault-free system, the fastest physical

layer will deliver the first copy, which will be immediately delivered to the destination. If
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the first packet is lost or corrupted, the second packet copy will still arrive within the

predetermined latency (2xTTRT).

6.5.3.2. Authentication Protocol (ATP)

The Byzantine resilient network protocol uses the authentication protocol (ATP) to sign

outgoing packets and to test the authenticity of incoming packets. The transmitting ATP

entity attaches two pieces of information to each outgoing packet for use by the receiving

ATP entity: a sequence number and a signature. These two items are used by ATP and

BRNP to determine if a given packet was sourced by the appropriate station, and to select a

valid packet from multiple packet copies.

The sequence number defines the sequence of packets leaving a station destined for a

specific address. Two sequence number tables are kept by each station, one for transmit

and one for receive. The transmit sequence number table contains a separate sequence

number for each physical, logical, and broadcast address to which the local station

transmits. When a sequence number is requested by BRNP for a destination address, the

ATP returns the current sequence number in the table and automatically increments it in

preparation for the next packet.

A corresponding sequence number table is kept with sequence numbers for each

physical, logical, and broadcast address the station listens on. When a packet is received

from a remote station, the ATP checks to see if the sequence number on the packet is the

number in the receive table. If the sequence number is correct, the packet passes the

sequence number test. The values in the receive sequence number table are not incremented

automatically on success of the sequence number test. BRNP increments the receive

sequence numbers only on delivery of a packet to a destination.

Signatures on outgoing packets are calculated by applying a private key function to the

data contained in the packet, including the sequence number. Each station has a different

private key function, thus no station can impersonate another station by using another

station's key. The same private key function is used regardless of whether the packet is

addressed to a physical, logical, or broadcast address.

The ATP validates the signature by applying a public key function to the packet data

and to the signature. If the results match, the packet passes the signature authentication test.

Each private key function has a different corresponding public key function, so each station
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mustkeepa table of the public key functions for each remote station from which the local

station expects to receive a packet.

The installation of a new station on the FTDB network requires synchronization of the

sequence number tables and distribution of the public key for the new station.

6.5.3.3, Address Resolution Protocol (ARP )

The address resolution protocol (ARP) maps network addresses to station physical,

logical, or broadcast addresses. The ARP is used by BRNP to determine the correct

physical address to attach to each packet destined for another station. The assignment of

network addresses is static in a particular _B implementation, thus the ARP is simple

and fast.
7

Network addressing in BRNP is designed to allow a station to be addressed as a single

unit, regardless of the station's redundancy level. This concept is similar to the virtual

group identifier (VID) numbers used in theAFTA. Consequently, a single network address

may map to several physical addresses.

6.5.4. Transport Layer

The transport layer protocols provide convenient application user interfaces for different

data communication models. Each transport layer protocol communicates through BNRP.

The protocols handle all redundancy management and fault-masking issues. The user

programming model for each protocol is a virtual simplex unidirectional or bidirectional

data port. All protocols are supported on sites of simplex, triplex, or quadruplex

redundancy level. In the AFTA, the transport layer protocols are implemented in the Ada

run-time system as a part of the I/O systems services. However, the protocols are not tied

to any particular programming language, development environment, or operating system.

Normally, the transport layer is used to build reliable message delivery on top of an

unreliable network layer. For example, the transmission control protocol (TCP) uses a retry

mechanism to ensure message delivery using the best-effort internet protocol (IP).

However, in the F'IT)B, the network protocol itself is reliable, so the transport protocols do

not need to implement retry or other mechanisms for reliable message delivery.
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Most of the transport layer protocols described below use sockets to discriminate

between multiple application tasks using the same protocol. The socket model is similar to

that employed by the TCP/IP protocol suite [Corn91 ].

6.5.4.1. Periodic Datagram Protocol CPDP_

The periodic datagram protocol (PDP) uses a connectionless socket to periodically

transmit or receive data using synchronous bandwidth. An example of a possible

application for PDP is for an intelligent sensor computer that periodically transmits a sensor

reading to one or more controller tasks. The protocol provides a method for synchronizing

sender and receiver. Since the protocol is based on reliable datagrams, the sender does not

care if the receiver is present or not; data delivery is guaranteed if the receiver is present.

Data received on a PDP socket also contains a timestamp, so the user task can determine the

relative age of the data. The protocol provides an exception mechanism for the receiver if an

expected datagram doesn't arrive within the expected timeframe.

(22_.4.2. Services Transaction Protocol (STP)

The services transaction protocol (STP) implements a point-to-point transaction model

for data transfer. A typical transaction-type situation is a server/client paradigm. The client

sends a request for a transaction to the server and waits for a response. The server

completes the transaction and returns the result to the client. The client blocks until the

server responds. The protocol provides a services registration mechanism, so that a server

does not need to always reside at the same station. In fact, a server could be moved if the

station on which a server resides becomes faulty.

6.5.4.3. A_nchronous Datagram Protocol (ADP)

The asynchronous datagram protocol (ADP) uses asynchronous bandwidth and a

connectionless socket to transmit data. ADP sockets are non-blocking, as a response is not

expected within a short timeframe. Reception of an ADP datagram is treated as an

exception. A task can either use an exception mechanism or polling to determine if an ADP

packet has arrived. ADP supports point-to-point and multicast communication. The ADP

programming model is very similar to the send msg and get_msg primitives of the intra-

cluster communication system in the AFTA Ada run-time system.
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6.5.4.4. Network Data Stream Protocol(NDSP_

The network data stream protocol (NDSP) provides a virtual circuit connection between

two sockets. The operation is similar tO that provided by TCP. Asynchronous or

synchronous bandwidth can be used. An attempt is made to allocate synchronous

bandwidth, if requested, when an NDSP s_ket is opened. If the synchronous bandwidth

is not available, asynchronous bandwidth is used until the requested synchronous

bandwidth becomes available. If there is no-outgoing data in the NDSP output buffer, the

synchronous bandwidth is wasted, so synchronous NDSP sockets should be used with

discretion.

6.5.4.5. Network Diagnostic Protocol (N{)P)

The network diagnostic protocol (NDP) is used to perform diagnostic testing of the

network. An NDP datagram can be pre-routed by the sender and can be transmitted through

a loop back to the sender. NDP can also r_uest nested authentication, so that each station

that supports BRNP will concatenate its signature to the NDP datagram, providing a

mechanism for testing each node on a network.

The NDP includes a diagnostic log which records recently observed authentication

errors by the local authentication protocol. The network FDIR task uses the diagnostic log

to attempt to diagnose faults in the system.-Also, the diagnostic log can be copied to a

permanent database for use in system maintenance.

The NDP also provides a mechanism for reconfiguring around diagnosed faults in the

physical layer if the physicai layer supports reconfiguration. In the FDDI implementation of

the FTDB, the NDP interfaces to the station management (SMT) entities for reconfiguration

of a media layer.

Since network diagnosis and reconfiguration is dependent on the physical layer, NDP

is dependent on a particular physical layer implementation.

6,5.4.6. Echo ProtocolLF.,P_.l

The echo protocol (EP) simply returns an echo response whenever an echo request is

received. The echo protocol provides a simple and convenient method for determining the

status of a network station.
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6.5.4.7. Ti/rt¢ Management Protocol (TMP)

The time,, management protocol (TMP) maintains a global time value for all TMP

subscribers. The source of the global time value can be either a single external source, such

as an accurate time reference, or a distributed time agreement algorithm based on multiple,

less accurate time references. The TMP is used by the PDP to determine the age of periodic

data.

6.6. FTDB Development Plan

This section presents a proposal for development of a fault-tolerant data bus brassboard

system. The FI'DB brassboard can be used to interconnect redundant (C2, Ab_A) and

non-redundant (Silicon Graphics, MT-1) computing sites. The development plan is

segmented into subtasks, with each subtask emphasizing a different area of development.

6.6j 1. Developmental and Non-developmental Items

This section details the hardware items to be developed or acquired as part of the

proposed FFDB development plan.

The authenticator module (ATM) is a developmental item. The ATM implements the

authentication protocol (ATP) described above. The ATMs reside in the same FCRs as the

AP-TA, functioning as a redundant I/O device in the AFTA I/O paradigm. For an FMG,

there are 3 or 4 authenticator modules, depending on the redundancy level of the FMG. The

ATM signs outgoing messages, and authenticates signatures on incoming messages. The

design of the ATM is based on an ATM designed under a CSDL IR&D project.

FDDI interface boards are available as non-developmental items. The boards tentatively

selected for the initial FI'DB brassboard are the Interphase V/FDD14211 Peregrine boards.

These boards are available with either a single attach or dual attach interface and contain an

embedded AMD 29000 Processing Element to assist in implementation of the data link

protocols, especially the station management protocol. This processor can also implement

parts of the network layer protocols for the FTDB.

The voting interface module (VIM) is a developmental item. The VIM takes 1, 3, or 4

copies of a signed packet from the ATM and votes them. The VIM resides in the same FCR

as the FDDI interface board. The VIM is a very simple device. The design of the VIM is

based on the receive and vote stages of the AFFA Network Element.
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An optional developmental item is a single board interface module. The single board

interface reduces the FTDB interface from 2 boards per layer (not including the ATM) to

one board per layer by combining the VIM with an FDDI interface. The development of the

single board interface module requires building a custom FDDI interface using a

commercially available FDDI chip set such as that available from Advanced Micro Devices

or National Semiconductor.

6.6.2. Prooosed FrDB Brassboard D¢velop_nt plan

The proposed FFDB brassboard development plan is segmented into 4 subtasks. Each

subtask is considered an upgrade to the previ-ous subtasks, so the costs of each subtask are

incremental.

6.6.2.1. Subtask l-Authentication Protocbls ....

The emphasis of subtask 1 is to demonstrate the use of signed messages for

authentication, the embedding of authentication protocols onto an existing network

standard, and compatibility between BRNP and other FDDI traffic. The system developed

under subtask 1 also serves as a base for additional protocol development.

The characteristics of the system develo_d under subtask 1 are as follows:

• 2 station system of simplex devices ::

• single attach FDDI

• single media layer

Tasks:
2 authenticator modules

2 voting interface modules
2 single attach FDDI interfaces
2 FCR enclosures

data link layer protocols
BRNP, ATP

system integration

6.6.2.2. Subtask 2-Byzantine Resilience

The system developed under subtask 2, an upgrade to the system built under subtask 1,

demonstrates the Byzantine resilience of the FTDB, support for mixed redundancy, and the

reduction in hardware required for the network interface unit. One of the stations in the

subtask 1 system is upgraded to a fault-masking group, and an additional FMG is

connected.
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The characteristics of the subtask 2 system are as follows:

• 3 stations, 2 fault-masking

• single attach FDDI

° dual media layers

Tasks:
5 authenticator modules
4 self-contained interface modules
4 FCR enclosures

system integration

6.6.2.3. Subtask 3-Network FDIR

Subtask 3 demonstrates the ability to diagnose and reconfigure around faults in the

network. To demonstrate this capability, all stations must be upgraded to dual-attach FDDI,

and the network diagnostic protocol and network FDIR tasks must be written and

interfaced to the station management protocol. Software and hardware fault injection is

used to test the functionality of NDP and the network FDIR task.

The characteristics of the subtask 3 system are as follows:

° 3 stations, 2 fault-masking

° dual attach FDDI

• dual media layers

Tasks:

6 dual attach upgrades
NDP, network FDIR, fault injection

6.6.2.4. Subtask 4-Transport Laver Protocols

The purpose of subtask 4 is to develop transport layer protocols for use by user

application tasks on the AFTA or other FTDB subscriber. These protocols are intended to

make the FTDB useful in a real-time system. The subtask 4 system demonstrates the

applicability of these protocols for real-time applications. At the conclusion of subtask 4, all

developmental work for the brassboard FTDB is complete.

Tasks:

transport layer protocols
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6.6.3. FTDB Brassboard Develot_ment Sch_ule,

,Figure 6-15 describes the development of the FTDB brassboard. The development

schedule is intended to correspond to the development of the AFTA FTPP. Delivery of the

FTDB brassboard is targeted for sometime in March, 1993, near the projected delivery date

for the rest of the AFTA brassboard design.
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Figure 6-15. FTDB Brassboard Developrnent Schedule
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7. Testability and Maintainability

AFTA is designed tO be testable for hardware faults at all stages of its lifetime. As a

fault tolerant computing system, it actively tests itself during operational modes in order to

maintain its high reliability. During mission critical operations it is imperative that faulty

components be identified and expunged from the system to prevent the possibility of a

system failure should a second uncovered fault occur. However, because no computing

system is operational 100% of the time an_0ecause all digital computing systems require

maintenance, the testing capabilities of the AFTA will also encompass maintenance modes

of operation as well. Consequently, the system test activities will address all aspects of

determining hardware faults - at the maintefiance depot, upon command by an operator, at

power on, and in a mission critical environment.

7.1. Level of testing

The AFTA consists of numerous, individually testable components. Testing of the

AFTA will exercise these components as comprehensively as possible. The components

addressed by the test suites are the processors, Network Elements, I/O controllers, power

conditioners, mass memory devices, and VME buses.

There are essentially 2 levels of testing: component self tests and system tests. The

component self tests are intended to isolate faults in the functional components of a line

replaceable module with the emphasis on isolating the fault to a chip-level component. This

goal can be achieved using on-board diagnostic mechanisms or functionally equivalent

tests. On the other hand, the system tests are designed not only to exercise the numerous

components in a cohesive manner but also to perform these tests while performing mission

critical operations. _ ......

7.1.1. Component self tests

The component self tests are diagnostic tests which exercise the various hardware

components of the AFTA. Each line replaceable module (LRM) in the AFI'A will have a

suite of tests which exhaustively tests each functional component of the LRM. Whenever

available, these tests will be supplied by the manufacturer of the LRM. The testable

components on the AFTA are the processors, Network Elements, I/O controllers, VME

bus, mass memory and power conditioners.
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7.1.2. System tests

The component self tests exercise the functionality of the individual line replaceable

modules. Conversely, the system tests exercise functions requiting multiple components

operating in tandem to effectively test the system. Because the AFTA is designed as a fault

tolerant system, fault detection mechanisms are built into the specially designed

interconnection network and are exercised at every message exchange to provide high

coverage of faults with low fault latency. The goal of the system tests is to test the AFTA

as an operating entity exercising these fault tolerant mechanisms.

Fault tolerance in the AFTA is implemented using hardware redundancy. A specially

designed set of Network Elements operate in tight synchrony to implement fault tolerant

message exchanges among processors grouped into redundant virtual groups. The

constituent processors in a virtual group communicate with the members of its virtual group

and with other virtual groups by synchronously sending messages via the Network

Elements. The Network Elements perform fault tolerant specific operations on messages

and deliver voted messages to all members of the destination virtual group. The voting

process generates a consistent voted copy of the message as well as error syndrome data

which are appended to the delivered message. This error syndrome information can be

used to identify faulty components.

7.2. Test Modes

AFTA testing activities shall operate in 4 distinct test modes defined by both the

operational as well as the physical environment. In addition, these modes will dictate the

operator interface. These testing modes are: depot test, maintenance built-in test (M-BIT),

initiated built-in test (I-BIT) and continuous built-in test (C-BIT).

The depot test mode comprises a suite of tests available to the test technician or

automatic test equipment (ATE) for testing the components of the AFTA at a maintenance

repair facility. Specifically, the test suite consists of sets of diagnostic level tests for the

processors, I/O controllers, the Network Element, VME bus, mass memory, and power

conditioners. These depot tests execute outside of the constraints of a real-time

environment with the emphasis on the isolation of chip level faults in these components.

The M-BIT mode is essentially flight-line maintenance which is initiated upon

command by the flight or maintenance crew. Because this test mode is a maintenance mode

with the emphasis on detecting and isolating faults, mission critical operations will not be
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activeduringthis stage. The computing resources are devoted entirely to this maintenance

activity. Consequently, the suite of tests f_anbe very extensive in testing the functionality

of each line replaceable module of the AFTA. In addition, the test suite will include tests of

the functionality of the LRM interfaces, particularly the buses. As an exhaustive set of

tests, this test suite will probably require on the order of minutes to complete; however,

abort mechanisms will be provided terminate the test activity prematurely.

When power is applied to the all components of the AFTA hardware, the I-BIT mode

shall be initiated. The objective of testing during this period is to identify faulty

components in a non-mission critical stage to obviate their sudden exposure at a time when

the recovery options are very limited. As a result of the evaluation of the series of I-BIT

tests, the faulty and non-faulty components will be identified and the initial system

configuration will be established concordant With the mission reliability requirements and

the availability of non-faulty components. During a relatively short period (seconds), the

system initializes and tests itself. However, because of the time constraint a broad

spectrum of tests will be executed to test the basic functionality of all LRMs rather than

extensively testing of only a couple of LRMs. Testing at this stage of activity with a

comprehensive suite of tests ensures that the system reliability is as high as possible by

determining those LRMs which are faulty :and excluding them from the initial system

configuration. Because this stage is not executing mission-critical functions, the suite of

tests can be as extensive as time permits in exercising all functions of the component

without regard to the maintenance of mission critical information. Furthermore, the system

configuration options are far more numerous at this stage than during mission critical

operation where real-time constraints are serious barriers to many reconfiguration

alternatives.

The C-BIT mode will be initiated when mission critical operations are activated.

During this test mode not only will the mission-critical application tasks execute within a

real-time scheduling scheme but, because the system configuration consists of redundant

groups, redundancy management functions such as voting will be active to ensure that

failures do not disrupt correct system operation. Unlike the previous test modes, the fault

detection and analysis functions are constrained within a real-time framework. In addition,

these functions must not interfere with mission critical operations; data integrity must be

maintained and the consumption of computing resources must be minimized.
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Figure 7-1. System mode and Test Mode Interactions

Figure 7-2 illustrates in greater detail the system operations from an initial power-on

state and the interaction with the Ab'TA test modes. This sequence is described thoroughly

in Section 5.

J
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7.3. Operator interface

There are 2 primary operators of the AFTA who are interested in the health of the

AFTA - namely, the vehicle operator and the maintenance crew. Each has drastically

differing requirements regarding the health of the digital computing system. The vehicle

operator is primarily interested in discerning the relative health of the system with regards

to its ability to accomplish the current mission with a sufficient measure of reliability.

Specifically, the vehicle operator requires knowledge whether the mission configuration is

commensurate with the requested redundancy configuration. Furthermore, he requires

knowledge of the reliability of the mission configuration when it differs with the request.

The AFTA operating system should provide some measure of reliability for each critical

functional area - that is, navigation system, flight control, as well as the some

determination of the health of redundant sensors and actuators. In addition, it is highly

desirable to filter this information sufficiently such that the information presented to the

vehicle operator is easily decipherable and interpretable given that the pilot may be

immersed in other mission critical operator tasks.

Conversely, the maintenance crew is interested in the isolation of faults to a specific

component. In fact, 2 tiers of fault diagnosis are highly desirable. Field operations

maintenance requires that components be easily replaceable. Consequently, identification

of faulty line replaceable modules (LRM) is important to the field operations. On the other

hand, the expense of LRM replacement warrants the identification of chip level faults

whenever possible. This enables LRMs to be shipped to a maintenance repair facility for

diagnosis of faulty components within the LRM and replacement of those components.

7.4. FTPP C2 Network Element Tests

The FFPP C2 system is the forerunner of the AFTA system. Like the AFTA, the

Network Element is the integral component of this fault tolerant computing system. While

there are many differences between rthese systems, there are many similarities in the

architecture of the Network Element.

This section describes in detail the component self tests developed for the C2 Network

Element.
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7.4.1. Off-line Standalone NE Diagnostic Tests

The following tests verify the correct operation of the FTPP-C2 Network Element (NE)

hardware to the extent made possible by the current design under the control of the local

Processing Element(PE), an MVME-147 board. All tests are standalone in the sense that

no inter-Network Element communication takes place. In fact, the execution of most of

these tests would be disruptive to the synchronous operation of the aggregate NEs. Thus

the test suite can only be executed by each PE running in simplex mode. The tests have

been developed as a program to be downloaded to each processor and executed from RAM.

However, since no static variables have been used, the code could easily be converted to a

PROMable version. The PROMed version could either be called as a subroutine by any

program running on the PE or as a standalone program from the i47-Bug PROMed

debugger. In the first case, the subroutine returns a boolean to the calling program

indicating whether or not any errors were detected. In the second case, the routine simply

returns to the 147-Bug user interface. A second version of the program is provided for use

from the 147-Bug user interface to allow standalone testing of the opfo-electrical devices

used in the fiber-optic communications. All error reporting is displayed on the VT-220

terminal attached to the PE. In addition to fully Verifying the correct operation of the

Network Element, the tests are intended to serve a routine maintenance function, enabling

an operator to replace faulty components.

The C2 NE hardware comprises six functional blocks. They are:

1) The Processor-Network Element Interface

2) The Network Element Data Paths

3) The Network Element Global Controller

4) The Scoreboard

5) The Inter-Fault Set Communication Links

6) The Network Element Synchronization Method(Fault Tolerant Clock)

The tests in the off-line standalone test suite fully verify the Correct operation of the f'trst

four functional blocks. Some of the tests also perform diagnostic analysis of errors detected

during the test suite in an attempt to identify the cause of the error to as fine a level as

possible. In a few cases, the IC responsible for the error can be identified. The on-card

components of the fifth functional block are tested with a separate test suite since these tests

can only be performed after some optical cables are connected in a testing configuration.

Testing the last functional block, the Network Element Synchronization Method, requires
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truesynchronousNE operation. The functionality of the fault tolerant clock is minimally

tested in the scoreboard tests.

7.4.2. Functional Block: Plgcessor'Network Element Interface

Sub-block: Address Decode and Dtack Generation

Parts List: U0101, U0105, U0109, U0113, U2909

Test Description: A failure in this part of the circuitry will appear to the PE as a
Bus Error. The criterion for passing the test will be that no Bus Error is detected
during a read of the Status Register or the first byte in the Dual Port Memory or a
write to the Class Fifo or the Transmit.........Fifo. Since it is not possible to isolate any
of the devices, each one must be replaced in turn until the Bus Error is eliminated.
Test Sequence Number: 1. All further testing depends on the ability to correctly
read and write data to this interface.

Sub-block: Reset Generation

Parts List: U0113, U0117
Test Description: Writing to the Rese(Location of the DP RAM should cause the
NE to reset itself. To partially verify that the reset function is operational, the reset

location is written to and the necessary time delay is allowed to elapse. The status
register is then read. The value stored_ in bits one and zero should be 1. Next a byte

is written to the Class FIFO and the macro wrap_.serp_vme is executed. The status
register is again read. This time since data should be in the Receive FIFO, the value
of bits one and zero should be 3. The reset location is written to a second time and

the status register is read. The reset function is considered operational if the value
of bits one and zero of the status register is restored to one. If the test fails, either
the reset function is not operational or the status register has failed.
Test Sequence Number: 2. All further testing depends on the ability to

correctly reset the NE.

Sub-block: Dual Port Ram

Parts List: U4138

Test Description: A simple read/w_te pattern test is performed on the 2 Kbytes
of the dual port RAM. To pass thi s test, the pattern read from a given location must
be equal to the pattern that was:written ......to it. Since byte 0 of the DP RAM performs
a special control function for the N-E, it is exempt from this test. A failure of any
part of this test means replacing the device.
Test Sequence Number: 3. This tegt only depends on Test 1.

Sub-block: Dual Port Ram Contention Arbitration Capability
Parts List: U4073

Test Description: Since the on =chip contention circuitry is faulty, additional
logic in the form of this device was added to perform arbitration when both the PE
and the NE try to write to the same l_ation on this device at the same time. To test

that the contention logic is working, the same location on both sides of the DP
RAM must be accessed simultane0usly. First, the local timer is read. The

verify__contention macro is executed. This causes the global controller to lock out
DPCOMM0 for approximately 64 l.tseconds. Therefore, the if the VME side of the
DPCOMM0 is accessed now, 64 _seconds should elapse before it receives a Dtack.
After reading this location (the value _ad is irrelevant), the local timer is again read.
If 64 I.tseconds have elapsed, the contention logic is operating correctly. The time

which actually expires is reported as part of the test results.



Test Sequence Number: 5. This test depends on the DP RAM test and the test
for the Global Controller.

Sub-block: Receive FIFO
Parts List: U0121, U0125 U1421, U1425, U1205, U1417

Test Description: One byte is written to each of four DP RAM locations
(DPDATA0-DPDATA3). The deliverdpram macro is executed which causes these
bytes to be written in order into the Receive FIFO. The receive FIFO is read as a

long word and the four bytes compared to those written to DP RAM. If the
corresponding bytes are equal, the Receive FIFO is operational. If it fails, the
Receive FIFO is not operational or the DP RAM interface on the Voted Data Bus
which it shares with the Receive FIFO is faulty. There is no software test to
differentiate between these two possibilities. Replace the Receive FIFO and retry.
Test Sequence Number: 6. This test must follow the test for the Global
Controller and the test of DP RAM.

Sub-block: Transmit FIFO

Parts List: U0121, U0125, U1421, U1425, U1409, U1413
Test Description: The macro xmit_to_dpram sends data from Data Width

Converter on the VME bus through the Transmit FIFO to DP RAM through the
Debug Wrap Buffer. This wrap test is performed by writing a known long word
pattern to the Transmit FIFO and then executing the macro xmit to dpram four
times. The contents of DP RAM 0 is compared to the corresponding byte in the
long word pattern written to the Data Width Converter. If all four patterns match,
the Data Width Converter, the Transmit FIFO and the Debug Wrap Buffer are
considered operational. In this case, the same test is performed using the wrap_vme
macro. This macro causes the data from the Transmit FIFO to be transferred to the

Receive FIFO, thereby exercising some additional data paths in this interface. If this
exercise produces no errors the result is a passing score for the Transmit FIFO. If
some of the patterns in the xmit to dpram test match but others do not, the
corresponding register(s) in the Data Width converter are failed. If none of the

patterns match, either the Transmit FIFO has failed or the Debug Wrap Buffer has
failed. In this case a test to verify the operation of the Class FIFO is performed.
This test is described below. However, it uses the Receive FIFO instead of the DP

RAM as a repository of the wrapped byte. Thus if this test also fails, the Debug
Wrap Buffer appears to be the failed device. If a new device results in the same test

results, the Transmit and Class FIFOs are both faulty and must be replaced.
Test Sequence Number: 7. This test must follow the test of the Global
Controller, DP RAM and Receive FIFO.

Sub-block: Class FIFO
Parts List: U1201

Test Description: This test uses the wrap_serp_vme macro to transfer a byte
from the Class FIFO to the Receive FIFO. If the byte written equals the byte read,
the Class FIFO is considered operational. If they are not equal, the device is faulty.
Test Sequence Number: 8. This test must follow the presence test for the global
controller and the Receive FIFO.

Sub-block: Status Register
Parts List: U0117

Test Description: Following the execution of an NE-reset command, the value

of the lower two bits of the status register should be 01 corresponding to an
asserted value of CTS and a de-asserted value of DR. An asserted value of CTS

corresponds to an empty Transmit FIFO. A de-asserted value of DR corresponds
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to andanemptyReceiveFIFO. This part of the test is run implicitly in the reset
function test. However, the ability to clear the CTS bit (bit zero) in the status byte
read from this register can be tested also. This is accomplished by writing a series
of long words to the Transmit FIFO and reading the Status register. CTS should be
de-asserted when the Transmit FIFO is more than half full or after 129 long words
have been written. It should remain in that state while the Transmit FIFO is filled to

hold finally 256 long words. Next the macro wrap_vme should be executed
enough times to transfer half the data_m the Transmit FIFO to the Receive FIFO.
This will require adjusting the message size with the write to_ftc macro. Since the
largest message which can be sent is 15 long words and _e smallest message is 4
long words, this can be accomplished with two 15 word messages and one 12
word message. At this point, the CTS should be reasserted. After the contents of
the full Transmit FIFO are transfe_ed to the Receive FIFO, the contents of the
Receive FIFO are read and compared to the outgoing data. Each of the 256 long
words read from the Receive FIFO should match the corresponding word written
out to the Transmit FIFO. When the Receive FIFO is empty, DR should be de-
asserted.

Test Sequence Number: 9.

Sub-block: Debug Wrap Buffer
Parts List: U2701

Test Description: When tests for both the Class FIFO and the Transmit FIFO
fail, this buffer is implicated. No UnFque test for this device is possible.
Test Sequence Number: N.A.

7.4.3. Functional Block; Network ElcmentData Paths

Sub-block: Data Paths through My FIFO and Opposite FIFO
Parts List: U2705 (Tri-Statable Pipeline Register), U1667, U1661, U1666, and
U1669 (Debug Router), U0167 and U0149 (My FIFO), U0169 and Ul163
(Opposite FIFO), U0244 and U1244 (Voter), U2163 (Synchronous Data Path
Controller), U2244 (Asynchronous Data Path Controller), U2149 (Vote Mask
Register)

Test Description: The purpose of this test is to determine whether or not the data
paths through the FIFOs designated as My FIFO and Opposite FIFO are
functioning correctly. Since the devices comprising the FIFOs cannot be fully
isolated, the hardware comprising th_ entire data path is also tested both implicitly
and explicitly by the test suite descd_d here. Two data paths are exercised. The

aggregate error information obtainedduring this process is then analyzed to identify
as closely as possible the source of any errors. In the fast test sequence, data is sent
from the Transmit FIFO over My External Bus through the Debug Router to My
FIFO, through the Voter and finally _ad back from the Receive FIFO. For this data
path, the Vote Mask is set to exclude data from all channels except My FIFO in the
voted result which is returned to the Receive FIFO. In the second test sequence, the
data path is the same except the data path FIFO used is the Opposite FIFO. The
Vote Mask is set to vote only data from the Opposite FIFO. (The voter PALs only
allow simplex "voting" of data from these two particular FIFOs). For both tests the
messages sent are the same: four words which contain bit patterns for byte wide
"marching ones" through a field of zeroes and "marching zeroes" through a field of
ones. Each test answers the following two questions: (1) Does the data read match,
bit for bit, the data written? (2) Were any voter syndromes registered against the

Page 7-11



data path FIFO in use? If all patterns read match the patterns written and no voter
syndrome errors are reported against the channel under test, the devices in these
data paths are functional. If no data is delivered to the Receive FIFO for either path,
the functional blocks suspected of being faulty are the Synchronous or
Asynchronous Controllers. If pattern errors are detected on both paths but no voter
syndrome errors are detected, then devices in the Tri-Statable Pipeline Register or
the Debug Router may be faulty. If a pattern mismatch occurs on only one data

path, then the FIFO in that path or its associated pipeline register may be faulty. If
syndrome errors are reported on both data paths, then the Voter or the Vote Mask
Register may be faulty. If any errors are detected, the raw test results of this test are
displayed on the attached monitor in tabular form.
Test Sequence Number: 10.

Sub-block: Data Paths through Left FIFO and Right FIFO

Parts List: U1667, U1661, U1666, and U1669 (Debug Router), U0161 and
U0153 (Left FIFO), U0165 and U1149 (Right FIFO), U0244 and U1244 (Voter),
U2163 (Synchronous Data Path Controller), U2244 (Asynchronous Data Path
Controller), U2149 (Vote Mask Register)
Test Description: This test and the data analysis are performed in exactly the
same manner as the test for the Data Paths through My FIFO and Opposite FIFO
except that a different Vote mask is used. This test is only performed when no
errors are detected on the previous data paths test suite. The Vote Mask used to test

the Left FIFO includes My FIFO, Opposite FIFO and Left FIFO. For testing the
Right FIFO, the mask is changed to include Right FIFO and exclude Left FIFO. If
any errors are detected by this test, the raw test results of both sets of data path tests
are displayed on the attached monitor in tabular form.
Test Sequence Number: 11

Sub-block: Voter Error Detection Capability
Parts List: U0244 and U1244 (Voter), U2149 (Vote Mask Register), U3877
(Syndrome Accumulator)
Test Description: The purpose of this test is to determine if the error detection

capability of the Voter is functioning properly. This test is only performed if the
Data Paths test suites have detected no errors in at least three of the the data paths.

Depending on the number of working FIFOs, all possible configurations are tested.
If all four FIFOs are fully functional, then the quadruplex and three triplex
configurations are tested. If only three FIFOs are operational, then only one triplex
configuration is tested. Each configuration is tested separately. One at a time, each
channel of a given configuration is designated as the channel under test. The
channel so designated is sent a corrupted message while the other channels receive

congruent copies of the valid message. The messages are selected so that error
detection is tested for every bit in eight bit wide voted data path. Furthermore, both
possible error types are tested in each bit position, i.e. a correct value of zero and an
erroneous value of one and vice versa. Error insertion is accomplished by first
writing a valid message to all the FIFOs, then cleating the FIFO under test and
sending all FIFOs the corrupted message. The FIFO under test now holds only one
message, the corrupted one while the other FIFOs have a valid message followed
by the corrupted message. Since the first message in the FIFOs are voted together,

this procedure correctly inserts an error in the FIFO under test. Having thus
inserted an error, the message is voted and delivered and the resulting voter
syndrome information is examined. If, in all cases, an error is recorded against the
channel under test, the error detection hardware is deemed to be functioning

correctly. Furthermore, if, in all cases, the voted value of the message correctly
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masks the error, the voter hardware is deemedto be functioning correctly.
Otherwise,amalfunctioningcomponentexistsamongthedeviceslistedabove.In
this case, the resultsof the test _ displayedin tabular form on the attached
monitor.
Test Sequence Number: 12

Sub-block: MessageReflectionMultiplexer
Parts List: U2657, U2661, U2665, U2669

Test Description: The purpose of_iS test is to verify that the special data paths
involved in Class 2 exchanges are operating correctly. In particular, this test
exercises the reflection path through the multiplexer which performs the second
round of the Class 2 exchange. Each reflect path is tested in turn. A message is
written to the data path FIFOs with the wrap to_dp macro. The FIFOs which are
not under test are then cleared. This is followed by the reflect_from_X macro,
where X is either A,B,C, or D, depending on the reflect path under test. The
message is then voted and read from-fhe Receive FIFO. If the patterns match and
no voter syndrome errors are reported, the reflect function is working properly.
Any pattern mismatches or syndromes errors are indications of faulty hardware
along the reflection data path and ibis information is therefore displayed in a
message on the attached monitor. ...........
NOTE: The microcode does not correcdy execute the reflect.from_X macro, so this

test cannot be performed. ...........
Test Sequence Number: 13

7.4.4_ Functional Block: Network Element Global Controller

Sub-block: The Global Controller

Parts List: U1473, U2773, U1491, U1485, U0181, U0185, U1477, U0177,

U0173, U2725, U3869, U2777, U2781, U3885
Test Description: Despite its complexity, there is very little visibility into the
operation of this functional block from the PE. A presence test can be performed
and the results read back from DP RAM by executing the macro write_pattern. The
Global Controller is considered "active" if the correct pattern is written to bytes 0
and 1 of the DP RAM. Another macro, verify_counter, causes the Global
Controller to load its counter with 255 and to count down to zero. However, the

successful execution of the presence test and the countdown test does not mean that
the Global Controller is fully operational. Massive failures of other tests implicate
the Global Controller. However, Without detailed knowledge of its operation,

ascertaining which devices are faulty_s not possible.
Test Sequence Number: 4

Sub-block: ISYNC Test

Parts List: All NE components except the Scoreboard
Test Description: The purpose of this test is to verify the operation of the Global

Controller in performing the initial network element synchronization, ISYNC. Even
though the synchronization taking place is trivial, because synchronization with
oneself is true by definition_ the Global Controller does not "know" this fact.
Therefore, it performs the synchronization as if it were trying to synchronize the
quadriplex NE configuration, utilizing all the same logic and state changes required
in a "real" synchronization. At then end of ISYNC, the NE reports the channels
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7.4.5.

with which it is synchronizedin adualport RAM location. In this case,it should
besynchronizedwith itselfand the three other NE channels, since the debug router
is programmed to transferdata from the simplex channel conducting the test to all
data path FIFOs, not from the external optical network. Following ISYNC, the NE

is in synchronous mode and therefore will no longer respond to commands placed
in the dual port RAM. Instead, it responds only to message sending commands
generated by writing to the Class FIFO with the desired message size and class.
The presence of messages delivered to the Receive FIFO are detected by reading the
Status Register. To return to debug mode the NE must be reset.
Test Sequence Number: 14

Functional Block: The Scoreboard

Sub-block: Message Size Test
Parts List: U3234, U3244

Test Description: The purpose of this test is to verify to operation of the
Scoreboard in sending packets of every allowable length. The Scoreboards of the
various NEs communicate with each other by means of System Exchange Request
Packets (SERPs). The SERPS contain information on the contents of the Class

FIFO on each NE as written by its associated PE. In this simplex mode of pseudo-
synchronous operation, the SERP packets are all identical and therefore the voted

SERPs processed by the Scoreboard should always cause the message sent by the
PE to be delivered. One at a time, messages of length 16N bytes (where N has a
value from 1 to 15 inclusive) are written to the Transmit FIFO. The size and class

of the message are then written to the Class FIFO. The Status Register is polled
until it indicates the presence of a message in the Receive FIFO. The delivered
message is then read into a buffer. The contents and size of the message received is
compared with the message that was sent. If there is any disagreement, this result
is reported in an error message displayed on the attached monitor. The voter masks

are set so that this test is performed for every possible configuration of channels
over the minimum fault masking number which in this case is three, provided that at
least this many channels are deemed to be working correctly. Thus even if only
three channels are working correctly, the quadruplex and four triplex configurations
are still tested, since this is a normal operational condition. This test is integrated
with the following test for Message Size to exercise every possible combination of

message class and message size with every voting mask that provides a fault
masking group.

Test Sequence Number: 15, the NE must be in synchronous mode following
!SYNC

Sub-block: Message Class Test
Parts List: U3234, U3244

Test Description: The purpose of this test is to verify to operation of the
Scoreboard in sending packets of every allowable class. It is similar in execution to

the Message Size Test. In fact, these two tests are merged to allow every possible
combination of class and size to be written to the Class FIFO. The contents and size

of the message received is compared with the message that was sent. If there is any

disa.greement, this result is reported in an error message displayed on the attached
momtor. In implementing this test and the previous test for Message Class, every
possible combination of message class and message size is exercised with every
voting mask that provides a fault masking group.
Test Sequence Number: 16, the NE must be in synchronous mode following
ISYNC
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7.4.6. Functional Block: The Inter-Fault Set Communication Links

Sub-block: Optical Data Links and TAXIs
Parts List: U4209, U4229, U4245, U4266 (ODLs), U4914, U4214, U4363,
U4250 (TAXIs)

Test Description: The purpose of this test is to verify the correct operation of the
devices used in the C2 optical communication network. This test requires that the
cables which usually connect the optical Transmitters to other fault sets be instead
connected to the Optical Receivers of the simplex channel itself. In this wrap-
around mode, the debug muter must be programmed to route data received optically
to the data path FIFOs. The tests Which exercise the data path FIFOs, ISYNC and
the message class and size are repeated for this configuration.
Test Sequence Number: 17

7.4.% Conclusiops

While the series of NE self tests exercise much of its functionality, the testing

procedures demonstrate some deficiencies in hardware architecture of C2's NE. The NE is

a highly integrated hardware unit. In a few cases a specific IC can be identified as the

source of an error. However, in most cases, a set of ICs are identified as the most likely

source. Even worse, in a few cases, the = actual source of the error is completely

indeterminate.

These complaints are most obvious regarding the functionality of the Global Controller,

which is pervasive. Since all the self-testing depends on the full functionality of the Global

Controller, and since there is no way to fully verify the Global Controller itself, any failed

test could potentially be due to faults in the Global Controller, comprising 14 devices, or

due to bad connections between various 0ther devices and the outputs of the Global

Controller.

In the C2 NE, there is no microcode in the Global Controller to support fully

independent standalone testing of the Scoreboard. The operation of the Scoreboard can

only be observed during the synchronous operation of the system. However, it is possible

to operate the NE in a pseudo-synchronous mode in which the NE is synchronized only

with itself. In this mode, the correct operation of the Scoreboard can be inferred from

various positive test results.

Complete end-to-end testing of the inter'fault set communication links can only be

performed in conjunction with other NEs. However, it is possible to wrap the output of
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the optical transmitter to the input of the optical receiver on the same NE. However, this

requires operator manipulation of these cables. In this configuration, the operation of the

TAXI chips and the Optical Data Links can be tested.

Because the C2 NE was not designed for testability many functions of the NE were not

sufficiently modularized or accessible to test facilities. In many cases, it was difficult to

devise tests of functional components because of the inaccessibility of the necessary

information. In those instances, it was necessary to perform numerous tests and to analyze

the entire set of test results rather than to straight-forwardly exercise a single function with

a predicable result.

Finally, there is no functional level test of only the fault tolerant clock (FTC). Although

the fault tolerant clock is exercised during the scoreboard testing, the level of testing is

minimal. A fault in the FTC may or may not adversely effect the results of these tests

depending upon the nature of the fault.

7.5. AFTA Maintenance

The AFTA is being designed under the assumption that two domains of maintenance

activity will be used during its operational life. These are field maintenance and depot

maintenance.

7.6. AFTA Line Maintenance Procedure

An overview of the maintenance time line is depicted in Table 7-1. The times shown to

perform the various maintenance steps are extremely preliminary estimates. The AFTA

architectural features relevant to the maintenance discussion are shown in Figure 7-4.

. Operation
Perform M-BIT TBD

Open Ba)_.
Connect P1MA

Downloa_nt Fault Lo_
Replace LRM/LRU

Perform M-BIT

Close Bay

Estimated time reqd ....

30 minutes
2 minutes

minutes

30 minutes for LRM,
60 minutes for LRU
TBD

30 minutes

Comments

Initiated via CDU

Identifies LRU, LRM, Bay on CDU

Retest entire AFTA via PIMA/CDU

Table 7-1. AFFA Maintenance Time Line
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Figure 7-4. Maintenance-Related AFTA Features
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M-BIT is initiatedbycrewchiefor pilot via CDU or PortableIntelligenceMaintenance

Aid (PIMA) andis interruptibleatanytimeviaAFTA resetor powercycle. Resetof power

cycle throwsAFTA into I-BIT power-upsequence.M-BIT and I-BIT aredisabledin

critical vehiclemodessuchastaxi,flight, etc.

M-BIT indicatesfault statusof AFTA on CDU. If faults are found,CDU indicates

LRU, LRM, andbay in whichLRU canbefound. ThebaycontainingthefaultedAFTA

LRM/LRU is openedby themaintenancecrew. Vehicle-specifictoolswill berequiredto
achievethis. Oncethevehiclebay is open,themaintenancecrewmembercanconnecta

PIMA to aport on theoutsideof theAFTA LRU (Figure7-5). PIMA portswill alsoexist

elsewherein thevehiclewhichwill not requireopeningof vehiclebays. Accordingto LH
doctrine,eachvehiclepossessesaPIMA, whoseprimary purposeis to assistmaintenance

personnelin isolatingvehiclefaultsanddiagnosingproblems;it is assumedthatit will also

beusedfor AFTA diagnosisandmaintenance.ThePIMA, essentiallya largishruggedized
laptopcomputer,will beconnectedto thevehicleafter eachflight to interrogatesystem

status.For theAFTA, thePIMA iscapableof displayingandprinting (via anAVIS rental

car-like printer) the nonvolatile fault log maintained by the AFTA, sending the AFTA

through I-BIT and M-BIT, resetting the AFTA, and resetting the nonvolatile fault log.

The AFTA system services are also responsible for logging LRM/LRU utilizatio'n

information such as number of power cycles, elapsed power-on time, and other

information determined to be of interest to maintenance personnel. This information will be

maintained for each replaceable component, downloaded to the PIMA upon request, and

will accompany defective modules back to the depot via the PIMA printout. In addition to

its diagnosis function the PIMA will keep records, and store and display all flightline

maintenance and logistics publications [MIL-HDBK-59].

To further facilitate maintenance, an annunciator panel located on the exterior of the

LRU indicates which LRM inside is faulty. The panel contains one indicator for each LRM

slot.
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Figure 7-5. AFTA LRU

If the fault cannot be isolated to an LRM, the entire LRU must be replaced. This will

probably require tools to remove the chassis and wiring. An example of such a fault would

be failure of the inlra-FCR backplane connecting the LRMs.

If the fault is isolated to one or more LRMs, as indicated by both the CDU, PIMA, and

annunciator panel indicators, the maintenance technician opens the AFTA LRU by re-
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movingthe access panel. The access panel is sealed to the LRU chassis with manually op-

erable closures to allow this to be performed without the use of special tools. The faulty

LRM(s) is (are) removed using the injector/extractors attached to the LRMs; Allen

wrenches will be required to unseat and seat the "wedge-locks" on the LRM cold edges

from the chassis cold frame. Replacement LRMs are installed and secured using the LRM

injectors and wedge-locks.

After replacement of the LRU or LRM(s) and before replacement of the access panel,

the M-BIT is repeated, either from the CDU or the PIMA. Assuming that the M-BIT is

passed, the LRU access panel is replaced and the bay is sealed.

It is possible that I-BIT, M-BIT, and C-BIT could be used to diagnose faults down to

the integrated circuit level, and that this information could be recorded and printed out by

the PIMA and accompany the defective LRM/LRU back to the depot. However, because it

is necessary to confirm at the depot that the defective circuit was repaired before shipping it

back to the field, some ATE will be required for depot testing, assuming the AFTA

components cannot test themselves to the IC level at the depot.
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8. Common Mode Fault Study

Most current fault tolerant architectures arc primarily designed to tolerate random hard-

ware faults. It is assume_:l - _at the probabilities that redundant coPieS of a computation suf-

fer a fault at the same time are independent and uncorrclated. This is an accurate assump-

tion for random hardware faults but a poorone for common mode faults such as those

caused by software faults, because all copies of the execution will suffer the fault at the

same time if the copies are identical. Software faults axe but a specific class of common

mode faults. Other sources of common mode faults are generic hardware bugs or design

flaws, massive electrical upsets which overwhelm the fault tolerant power/clocking fault

containment mechanisms, etc. More rigorously, a common mode fault is defined to be a

fault that affects multiple fault containment region simultaneously or nearly simultaneously.

Nearly simultaneous in the AFTA context means that the system has not recovered from a

fault before the next fault arrives.

Under the AFTA program, a methodolo_ for detecting and recovering from common

mode faults in AFTA will be developed. In addition, a plan for verifying the effectiveness

of these techniques will be formulated. In the event that application-specific information

for the study is needed, the helicopter TF/TA/NOE application will be used as a context for

the common-mode fault tolerance study. :

8.1. Objective ....

The objective of this study is to develop a comprehensive methodology for reducing the

probability of failure of synchronous redundant Byzantine resilient computing systems due

to common mode faults. The methodology is to include techniques to avoid, remove, and

tolerate common mode hardware and software faults, the identification of means to verify

the effectiveness of the common mode fault avoidance/removal/tolerance (CMFA/R/T)

techniques, and a timetable for inserting or developing appropriate CMFA/R/T technology

into AFTA.

8.2. Approach

The study comprises four phases. Phases I and 2 comprise technology surveys, phase

3 comprises evaluation and planning, and phase 4 comprises initiation of the plan.
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8.3. Enumeration of Common Mode Fault Sources

Common mode faults and their sources are extremely diverse. They can be classified in

the same way that all faults are classified in the document "Dependability: Basic Concepts

and Terminology" [Lap90]. They can be classified according to three main viewpoints

which are their nature, their origin and their persistence. The three viewpoints are not mu-

tually exclusive.

8.3A Classification by Nature

Faults may be accidental in nature, i.e., they appear or are created fortuitously. Or they

may be intentional in nature, i.e., they are created deliberately.

For AFTA, intentional faults, e.g. Trojan horses, time bombs, viruses, will not be con-

sidered since they are related to secure systems. Security is currently not a requirement for

AFTA applications although it may be at some future point in time.

8.3.2 Classification by Origin

This is further divided into three viewpoints which are not necessarily mutually exclu-

sive:

1. Phenomenological Causes

- physical faults, which are due to 'adverse physical phenomena;

- human-mode faults, which result from human imperfections.

2. System Boundaries

internal faults, which are those parts of the system's state which, when invoked

by the computation activity, will produce an error;,

external faults, which result from system interference caused by its physical

environment, or from system interaction with its human environment.

3. Phase of Creation

design faults, which result from imperfections that arise during: the develop-

ment of the system (from requirement specification to implementation), subse-

quent modifications, or the establishment of procedures for operating or main-

taining the system;
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operational faults, which appear during the system's exploitation.

8.3.3 Classification by persistence

1. Permanent Faults

their presence is not related to internal conditions such as computation activity

or external conditions such as the environment.

2. Temporary Faults

- their presence is related such conditions and as such they are present for a lim-
ited amount of time.

Since intentional faults are excluded from the current scope of work, there are only 16

possible sources of faults that must be consI_de_. These are all the possible combinations

of the remaining four viewpoints. Of these the physical, internal, operational faults can be

tolerated by using hardware redundancy. Aiiother faults can affect multiple fault contain-

ment regions simultaneously. These are the sources of common mode faults. However,

only some of these fault classes are meaningful. These are tabulated in Table 8-1. Of

these, the interaction faults which arise from the interaction of the computer system with its

human environment, e.g. an operator, will not be considered here since the man-machine

interface is outside the scope of the AFTA's u-se as an embedded control system.

Phenomenological
cause

Physical Human
made

X

X

X

X

X

System
Boundary

Internal

X

X

External

X

X

X

Table 8-1.

Phase of

Creation

Oper-
Design ational

X

X

X

X

X

Persistence

Perm- Temp-

anent orary
X

X

X

X

X

Common Mode
Fault Label

Transient (External)
CMF

Permanent (External)
CMF

Intermittent (Design)
CMF

(Permanent) Design
CMF

Interaction CMF

Classification of Common Mode Faults

Using this methodology, then, only 4 sources of common mode faults need to be con-

sidered for AFTA:
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l. Transient (External) Faults which are the result of interference to the system from its

physical environment such as lightning, High Energy Radio Frequencies (I-IERF),

heat, etc.

,

,

°

Permanent (External) Faults which are the result of system interference caused by its

operational environment such as heat, sand, salt water, dust, etc.

Intermittent (design) Faults which are introduced due to imperfections in the require-

ments specifications, detailed design, implementation of design and other phases lead-

ing up to the operation of the system. These faults manifest themselves only part of the

time.

(Permanent) Design Faults are introduced during the same phases as intermittent faults,

but manifest themselves permanently.

If the relative likelihoods of these four classes of common mode faults were known,

one could apportion the efforts in dealing with them appropriately. However, the models

to predict the occurrence of design faults do not exist or are not mature enough to be of any

practical value to AFTA. Similarly, the rates of occurrence of transient faults and perma-

nent external faults are very much dependent upon the operational environment. Therefore,

the relative rates of occurrence of the four classes of AFTA common mode faults cannot be

predicted with any certainty. Experience suggests that all of these are sufficiently likely to

be of concern to the designers of AF'I'A.

8.4. Enumeration of Common Mode Fault Avoidance, Removal, Tolerance

Techniques

There is a wide range of techniques available today to prevent introduction of CMFs

into a Byzantine Resilient fault tolerant computer, to remove CMFs before such a computer

is put into operational use, and to detect and recover from CMFs that do occur during op-

erational use. As such, the techniques and tools can be classified into three major cate-

gories: Fault Avoidance, Fault Removal and Fault Tolerance. These classifications are de-

scribed in this section while their effectiveness and suitability for inclusion in AFTA _11 be

discussed later.
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8.4.1 Commoq blode Fault Avoidance =

These techniques and tools are used from the requirements specifications to the design

and implementation phases and result in fewer CMFs being introduced into the computer

system. An unprioritized list of these techniques and tools, without regard to their effec-

tiveness in preventing CMFs or applicability to AFTA, is as follows.

8.4.I.1. Formal Methods

These are mathematically based techniques for specifying, developing, and verifying

computer systems with strong emphasis on consistency, completeness and correctness of

system properties. Formal methods have been applied at various levels of specification and

design and to a diverse set of hardware, software and algorithmic parts of fault tolerant

computers. Some of the example applications include the following.

Microprocessor Design: Viper [Cohn88], FM8501 [Hun86], Mini Cayuga [Sri90];

Algorithm Specification and Implementation: Interactive Consistency and Oral Mes-

sages 1 [Bev90], [Bic90];

Fault Tolerant Clock Synchronization: [Da173], [Lam85], [But88], [Rus89];

Specialized Hardware: Communicator-Interstage [Klj88];

Software: Real Time Kernel [Spi90], Ada Formal Verification [Gua90], Formal

Specification [Goe91]

Reliable Computing Platform: [DiV91].

8.4.1.2. Formally Verified Components

Use of hardware and software modules that have previously been verified or have been

developed using formal methods can reduce the incidence of CMFs in these parts of a fault

tolerant computer. Examples of such components include microprocessors such as

VIPER, VIPER2, FM8502, Mini Cayuga, Floating Point Units, and Real Time Kernels.

8.4.1.3. Mature Components

Use of hardware and software modules that have been widely used over a long time

period and whose performance has been monitored and analyzed for correctness of opera-
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tion can also cut down the incidence of design faults. Examples of such hardware modules

include popular microprocessors such as Motorola 68020, Intel 80386, etc., floating point

coprocessors, memory management units, and Ethernet and VMEbus controllers. Exam-

ples of mature software modules include Ada Run Time System and CAMP (Common Ada

Missile Packages) software libraries [CAMP]. CAMP products have been developed under

contract to the US Air Force Armament Test Laboratory, Eglin Air Force Base, Florida and

are available from Data & Analysis Center for Software [DACS]. CAMP products consist

of Parts, Armonics Benchmarks, and Parts Engineering System (PES). The CAMP Parts

are 444 reusable Ada components organized into 35 Top-Level Computer Software Com-

ponents (TLCSCs) which contain 137,000 source lines of Ada code (including comments,

package specifications, package bodies, and test code). The CAMP Armonics Benchmarks

are used to evaluate Ada and processor implementations in the armonics domain. The

benchmarks represent typical armonics applications and include missile operational parts as

well as support parts from the mathematical domain. The tests establish the "correctness"

of compiler implementations and measure performance in size and speed of generated code.

The CAMP PES is a catalog that provides a means of identifying and retrieving reusable

software parts.

8.4.1.4, Design Automation Tools

These are tools and techniques that can help automate parts of the hardware and soft-

ware design cycle. By replacing a labor intensive design process with automated tools, the

incidence of human errors can reduced. In the software arena, more than 50 different

CASE (Computer Aided Software Engineering) tools are available that provide different

levels of automated software generation. The Draper CASE tool has been used, among

other applications, to produce Boeing 737 autoland code in Ada starting from a high level

control law specification. The Ada code was compiled and integrated with the existing

system software on the AIPS Fault Tolerant Processor without any modifications.

In the hardware arena, VHDL (VHSIC Hardware Description Language) is becoming

widely available to describe hardware designs at various levels of abstraction, from a high

level functional description to all the way down to the gate level.

A suite of tools, generally known as Silicon compilers, can be used to convert VHDL

or other high level design descriptions through various levels of detailed hardware design,

fight down to the Silicon implementation with some help from the human designer. One

such suite of tools is the Silicon 1076 compiler from LSI Logic, Inc. which interfaces with
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a VHDL design description at the top and produces a silicon chip at the end of the design

cycle.

8.4.1.5. Architectural Considerations .........

Human errors are more likely when dealing with complex systems and unconventional

concepts. In a fault tolerant computer, concepts that add to the design complexity of a con-

ventional Von Neumann uniprocessor computer architecture are redundancy management

and distributed and parallel processing. Examples of the additional complexities that a de-

signer faces are: fault containment, error coiatainment, synchronization of redundant pro-

cesses, communication between redundant_rocesses, synchronization of and communica-

tion between distributed/parallel processes_ all of these in the presence of one or more

faults, detection, isolation and recovery from faults, and so on.

If the design complexity can be reduc_ then the incidence of human errors can be re-..........

duced. Some of the fault tolerance concepts can be stated simply and precisely using a

mathematical formalism. These include the_requirements for synchronization, agreement

and validity. Other concepts that can be stated precisely include requirements for fault

containment and error containment. Because of their simplicity fault tolerant computers that

are based on these concepts and implement these requirements are likely to contain fewer

design errors. (it should be noted here that not all fault tolerant computers implement these

requirements.) There is an added benefit int_e design verification and fault removal phases

of basing designs on precisely stated requirements.

Another architectural consideration is the hiding of the design complexity. For exam-

ple, certain architectures implement fault tole_nce in such a manner that the virtual architec-

ture apparent to the applications programmer_nd the operating system programmer appears

to be that of a conventional non-redundant Computer. The Complexities of a redundant ar-

chitecture are made visible only to the tasks/hat must deal with detection and isolation of

faults and recovery from faults. .....

Similarlyl the complexities of distribut_arallel processing can be hidden from most

of the software designers by providing layered communication protocols such as the ISO

OSI models.
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8.4.1.6. Design Diversi_

Design diversity is the concept of implementing different layers of a redundant system

using different designs starting from a common set of specifications. The concept can be

applied to hardware, software, programming language, design development environment

and other design activities. This approach can potentially eliminate many common mode

design faults since each redundant layer uses a different design. Some design faults such

as those that result from an incorrect interpretation of ambiguous specifications could still

find their way in multiple or all designs. Design diversity is listed here as a fault avoidance

rather than a fault tolerance technique since it purports to confine each design fault to a sin-

gle fault containment region, thereby avoiding a common mode fault.

When redundant hardware and/or software elements are implemented using different

designs, bit-wise exact consensus cannot be guaranteed between the outputs of redundant

processors. However, it is still possible to provide a Byzantine resilient core fault tolerant

computer in which design diversity is used for applications programs.

&__Us¢ o__/_Standards

Over the years, a number of standards have been developed for the design of computer

systems. Although the primary motivation for the development of standards is ease of in-

teroperability, logistics, maintainability, reduced cost, and so on, one of the side benefits of

using standards is the reduction of design errors. Standards usually result in detailed, pre-

cise, and stable specifications that can be adhered to in the design phase and verified against

in the verification phase. The design errors that are normally introduced due to ambiguous

or changing specifications can potentially be eliminated by the use of standards.

Examples of standards include bus protocols such as MIL-STD 1553, PI bus, High

Speed Data Bus and processor Instruction Set Architectures such as MIL-STD 1750 and

more recently the JIAWG ISAs such as the Intel 80960 and the MIPS R3000. Software

standards include the MIL-STD-1815, more commonly known as the Ada language. The

advantages of mature, precise and detailed specifications are not limited to military stan-

dards alone. Commercial products, though not standards, per se, can become de facto

standards. VMEbus is such an example of a backplane bus standard.
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8.4.1.8. Good Software Engineering Practices

Common mode faults caused by software are probably the largest single source of fail-

ure in a redundant computer system. ManY software errors can be avoided by following

well established software engineering practices. These practices include adherence to the

waterfall software development methodology, that is, an orderly development of require-

ments, specifications, detailed design, code, unit test, module test, integration, and system

test, with traceability of requirements from beginning to end. Rigorous configuration con-

trol and documentation, such as that specifi_ by MIL-STD 2167A, are also considered an

integral part of this methodology. Other g_ software engineering practices include soft-

ware quality assurance reviews, use of Higher Order Languages such as Ada, modular

code, code reuse, and layering or hierarchicai Structuring of code such as the 7 layers of the

Open Systems Interconnect model for intercomputer communications.

It should be noted here that many of these software engineering practices overlap with

other fault avoidance techniques discussed in this section that can be used to avoid not just

software but also other common mode faultS_ For example, software quality assurance re-

views can be considered a part of design revre_ ws which are applicable to hardware as well

as software. Similarly, code reuse overlaps _ith use of mature components, and so on.

Since software development is a la_ntensive process, one of the good software

engineering practices deals with the training_hd qualification of people. It is important to

assign software development duties to peopl_e- who have been fully trained in the desired

software language, tools, and development methodologies and possess an appropriate type

and amount of experience in the relevant activities.

One aspect of personnel qualification that might be considered controversial is the

"quality" of people. It has been our experience that not all software designers who are

equally trained and experienced produce equally "good" software where quality of software

is measured by the number of errors. The difference between the best and the worst de-

signers can be an order of magnitude in the number of errors. Therefore, track record of

software developers as much as training and experience must be given consideration if the

goal is to produce high quality software.

8.4.1.9. Conservative Hardware Design Practices

Conservative hardware design practices_n help keep a healthy margin of safety be-

tween the worst operational conditions andre actual limits of operation of the computer
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system. The MIL-SPEC 883C operational temperature range, for example, is -55°(2 to

+125°C even though such extremes are probably never reached in actual use. Military de-

sign guidelines also call for derating of electronic parts by a certain margin depending on

the environment. For example, the current outputs of drivers, wattage rating of resistors or

maximum voltages of capacitors may be reduced by 20 to 50 percent to keep the operational

parameters well within the maximum design values. Use of military qualified parts, as

specified by MIL-STD 38510 or SMDs (Standard Military Drawings), ensures that the part

designs meet the functional and electrical specifications and that the parts have been manu-

factured and screened as specified by MIL-SPEC 883C.

Similar to the good software engineering practices discussed in the previous section,

the hardware logic can also be designed in accordance with conservative design rules de-

veloped over the years. Some of the example rules are the use of synchronous designs and

the avoidance of metastable states. Timing verification on synchronous designs is much

easier than for asynchronous designs. The worst case performance of a synchronous de-

sign always occurs at the longest propagation delay; a properly designed synchronous cir-

cuit will still function using delta (approaching zero) delays. Synchronous circuits typically

depend on inputs which are edge-sensitive. Edge-sensitive inputs should only be driven by

a signal that is guaranteed to be free of unwanted glitches. Acceptable signals are clocks,

outputs from registers, or flip-flops (not latches), and combinatorial circuits specifically

designed to be free of glitches under all conditions.

The state of a synchronous design should be predictable at all times following power-

up or reset. All state elements, except simple data registers, should be initialized by the re-

set process. Trap states in a state machine can be avoided by defining unconditional transi-

tions from unused states into the set of defined states. While the machine should not nor-

mally enter an unused state, prevention of trap states ensures that if it does enter such a

state, through a metastability problem or a single-event upset, the system will eventually re-

cover.

Metastability is another cause of common mode hardware faults that can be easily

avoided by adhering to. Metastability is caused by inputs changing within the setup and

hold time of a flip-flop and can cause finite-state machines to enter unwanted or undefined

states. Asynchronous inputs (those that might change within the setup and hold time) are

easily synchronized by passing the signal through a synchronizing flip-flop stage.
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8.4.1.10. Shielding. Packaging and The_l Management

An appropriate amount and type of shiel_ng and packaging can keep the HERF, Single

Event Upsets (SEUs), and lightning from interfering with the correct operation of the com-

puter system. Similarly, proper packaging _d cooling can keep the dust, saltwater, sand

and other foreign matter outside and also dissipate the heat generated internally to the out-

side. Proper packaging techniques can also assure that the hardware will survive the ex-

pected shock and vibration environmehi.q_llLE'5400 provides the military specifications

for thermal management and shock and vi_ti0n design requirements.

8.4.2 Common Mode Fault Removal

Faults that slip past the design process :can be found and removed at various stages

prior to the computer system becoming operational. The fault removal techniques and tools

include the following.

8.4.2.1. Design Reviews

Traditionally, informal design reviews ahd code walk-throughs between engineers and

peers as well as formal design reviews such as PDR (Preliminary Design Review), CDR

(Critical DR), SRR (Software Requirements Review) by supervisors and managers have

been used to uncover gross design and impiementation errors. The management reviews

also check the compliance of the design Wlththe intent of the high level requirements and

specifications, which may not always be stated unambiguously and precisely.

8.4.2.2. Simulatiott_

Simulations have been used at various levels to check compliance with design goals.

Functional and timing simulations have bee/i:a must before ASICs (Application Specific

Integrated Circuits) can be fabricated. VHDUcan now be used to perform behavioral simu-

lations before a function is even translatedinto an electronic circuit. VHDL can also be

used to perform more detailed, lower level simulations as behavioral boxes are replaced by

detailed circuit designs, all the way down to transistor characteristics.

8.4.2.3. Testing

For software, testing rather than simulation has been the traditional technique for un-

covering design faults. Unit tests, module tests, functional tests, and code reading have
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been used extensively in the past to verify correctness of software. Additionally, structural

analysis tools can also be used to analyze static software behavior.

More recently, a novel approach to testing software, called back-to-back testing, has

been advanced. It involves comparing outputs of the program under test against a func-

tionally identical program that has been produced from the same specifications as the target

program but by a different programming team and/or in a different language. This is simi-

lar to N-version programming in that multiple versions of a program are produced. How-

ever, after the testing phase is completed, only one of the versions is chosen for operational

use. Any miscompares at the outputs can be traced to a design or coding error in one of the

versions, an incorrect or different interpretation of specifications by different programming

teams or a difference due to round-off errors.

Testing with oscilloscopes, logic analyzers and probes has been the traditional hard-

ware debugging technique. With the advent of VLSI ASICS, very little visibility can be

obtained inside these chips with these tools. Designing chips with testability such that all

the internal nodes can be tested by applying test vectors (test inputs) and observing the out-

puts, has become a field in its own right. Scan-path is now a standard technique to make

ASICs testable. Similarly, automatic generation of test vectors for ASICs is significantly

more advanced than automatic generation of test inputs for software modules.

8.4.2.4. Fault Injection

Insertion of faults in an otherwise fault-free computer system that is designed to tolerate

faults is a powerful technique to exercise redundancy management hardware and software

that is specialized, error-prone, difficult to test and not likely to be exercised under normal

conditions, i.e., likely to stay dormant until a real fault occurs. Fault insertion techniques

can also be used to operate the system in various degraded modes which are expected to be

encountered in operational life of the system. Degraded mode operation stresses not only

fault handling and redundancy management aspects but also task scheduling, task and

frame completion deadlines, workload assignment to processors, inter-task communica-

tion, flow control, and other performance-related system aspects. Fault insertion exposes

the weaknesses in the hardware and software design, the interactions between hardware

and software, and the interactions between redundancy management and system perfor-

mance. It is an accelerated form of testing the hardware, software and the system, analo-

gous to "bake and shake" testing of hardware devices.
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Different typesof toolshavebeendevelopedto insertfaultsat variouslevels to stress

thefault tolerancecapabilitiesof computersystems.Draperhassuccessfullyusedapin-

level hardwarefault injector for thepast i0 yearsto uncoversubtledesignerrors in the

FTMP, FTPs and AIPS. A similar too! has also been developed by Laboratoire

d'Automatique et d'Analyses des Systemes _AAS) of the French National Center for Sci-

entific Research (CNRS) in Tolouse and Used to evalu9.te a railway signal control com-

puter ....

Carnegie Mellon University has devel6_ed FIAT to insert memory faults. A memory

mutation technique has also been used inde_ndently at Draper to stress the AIPS FTP re-

dundancy management software. Chalme_University in Sweden has experimented with

Californium as a radiation source to test a self-checking microprocessor pair.

Fault insertions at higher levels such as module, link, and fault containment region have

also been used at Draper for the purposes of design verification.

8.4.2.5. Discr__ ancy R_. ort_

A Discrepancy Report (DR) is filed ah-y-time anomalous or unexpected behavior of

hardware, software or the system is encountei'_. A DR deals with the observed symptoms

which may eventually be traced to one or more specific design, coding, manufacturing or

other problems. A DR log can be started as soon as the first phase of testing is begun.

This will normally be a unit test for softw_ and module test for hardware. Alternatively,

the log may be deferred until a unit/module has passed an acceptance test to the satisfaction

of the designer. Delaying the log to this poi/it can cut down the paper-work associated with

the relatively large number of error sympt0ms which is a normal part of initial debugging.

The risk with delaying the start of the log is that if the designer is not methodical in resolv-

ing all the observed discrepancies then causes of these errors may be left in the unit/module

if the unit/module acceptance test does not produce the error.

In any case, the DRs are logged through all subsequent phases of testing, integration,

and verification and validation activities. Once a DR is traced to an underlying cause or

causes, and the problems are successfully resolved, the DR can be closed out after record-

ing the cause(s) and ihe fixes made. Figure 8' i shows a typical format for a Discrepancy

Report. It should, at a minimum, describe originator, date, problem category, software

identification (if known), hardware identification (if known), document identification, other

related DRs, description of the symptoms or occurrence of an event, conditions, and con-
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jectureon possible causes. Other fields in the DR form that need to be eventually f'dled out

include analysis of cause and effect, recommended solution, disposition, and verification

and close-out. Each DR must also be signed by responsible engineers and managers.

It should be pointed out here that a Discrepancy Report is more comprehensive than a

"Bug Report" that is normally associated with the software testing phase. Typically, a Bug

Report is filed when a bug, i.e., a cause of the software error is discovered. A DR pre-

cedes the discovery of the cause. It is filed when an anomalous behavior is discovered

whether or not its cause can be immediately determined. Furthermore, it is not limited just

to software but applies to hardware and the system as well. A further important distinction

between a DR and a bug report is that a DR may eventually lead to the discovery of many

related errors. Typically, in early phases of the system integration several hardware and

software design errors, manufacturing defects, and subtle interactions conspire to produce

bizarre system behavior. As each error or defect is found and corrected, symptoms change

and become less or more bizarre due to the masking effect of one error on another. Some-

times the error symptoms disappear altogether due to a subde change in timing of events.

This is where DRs become quite useful in systematically accounting for abnormal behavior.

For example, if at the delivery time, the system passes all the acceptance tests but not all the

DRs have been successfully resolved, it implies that there could still be some latent errors

in the system.

Discrepancy Reports bring a certain amount of discipline to resolving the observed

problems. If the procedures for logging DRs are followed rigorously by all the engineers,

programmers, and technicians working on the program, then the probability of removing

all the known common mode faults is increased considerably. One no longer has to rely on

the memory or methods of individual designer or tester to keep track of the known prob-

lems.

DRs can be used to collect statistical data necessary to predict the software reliability

growth and other software reliability related metrics. The DR shown in Figure 8-1 can be

expanded to record the data that will be necessary to plot the number of software errors dis-

covered, the mean time between software error occurrence, relationship of errors to soft-

ware units and lines of code, and so on. under an internal R&D program, Draper is devel-

oping a system for automating the recording and searching of the DR database.
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DISCREPANCY REPORT ....................

The CharlesStark Draper Laboratory, lnc_

Cambridge, Massachusetts 02139
II

1. ORIGINATOR: 2. ORGANIZATION

DR NUMBER

PROJECT

"3. DATE:

SHEET_-. OF.........--

4. TELEPHONE #:

5. PROBLEM CATEGORY:

[] COMPUTER PROGRAM/DATA

r'] HARDWARE

[] DOCUMENT

[] O mR
8. DOCUMENT IDENTIFICATION: .....

arm

6. SOFTWARE IDENTIFICATION

(if known)

CPCI:

CI_:

UNIT:

VERSION/REVISION:

....... 9. RELATED DR:

[]
[]

7. HARDWA_ IDENTIFICA¥1ON:

SUPERSEDED

MODIFIED

(ff known)

10. DESCRIPTION (OCCURRENCE,):

11. CONDITIONS:

12. POSSIBLE CAUSE:

ii iHmll

13. ANALYSIS OF CAUSE AND EFFECT:

SIGNATURE ORG ..........._=b^TE TEL.

14. RECOMMENDED SOLUTION:
m

SIGNATURE OR(; DATE TEL.

SIGNATURE

[] NO ACTION REQUIRED [] ECP NO.

[] F,CRNO. [] OTItER

ORG i @iii, DATE TEL,

16. VERIFICATION AND CI.OSE OUT:

RESPONSIBLE ENGINEER

TECI INICAL MANAGER

DATE

DATE

Figure 8-1. Typical Discrepancy Report Format
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8.4.2.6. Automated Theorem Provers

Automated theorem provers or mechanical checkers have been used to argue the com-

pliance of an implementation with a set of specifications. In the course of showing the cor-

respondence from one level to the next, one develops a set of arguments to convince the

ATP that one formal statement follows from another. This usually leads to uncovering the

errors in the correctness of implementation.

1],4.3 Common Mode Fault Tolerance

Common mode faults that are not removed prior to operational use of a computer sys-

tem may eventually manifest themselves in the field. At this point the only recourse is to

detect the occurrence of such a fault and take some corrective action. These are fault toler-

ance techniques and following is an unprioritized list of such methods.

814.3.1. Common Mode Fault Detection

Before a recovery procedure can be invoked to deal with common mode faults in real

time, it is necessary to detect the occurrence of such an event. Many ad hoc techniques

have been developed over the years to accomplish this objective. Most of these techniques

can also be used prior to operational use of the system to eliminate faults. The difference is

that in the fault removal phase, detection of a fault leads to some trap in the debugging envi-

ronment while in the operational phase it will lead to a recovery routine. Similarly, fault

removal techniques discussed in Section 8.4.2 can also be used to aid in the task of detect-

ing faults in real time, albeit with a high penalty in performance.

a. Watchdog Timers

Watchdog timers can be used to catch both hardware and software wandering into

undesirable states. They are typically used in the Processor Element but can also be em-

ployed in the Network Element. Neither hardware watchdog nor task timers unambigu-

ously indicate the occurrence of a common mode fault. The syndrome in the failed channel

of a physical fault is no different from that of a common mode fault. The syndromes

across redundant channels must be compared in real time to determine the cause.
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b. Hardware Exceptions

Hardware exceptions such as illegal address, illegal opcode, access violation, privilege

violation, etc. are all indications of a malfu_nction. Again, syndromes across redundant

channels must be correlated to distinguish between physical and common mode faults.

c. Ada Run Time Checks

Ada provides numerous run time checks such as type checks, range constraints, etc.

that can detect malfunctions in real time. Additionally, user can define exceptions and ex-

ception handlers at various levels to trap abnormal or unexpected program/machine behav-

ior.

d. Memory Management Unit

The Memory Management Unit can be programmed i0 limit access to memory and con-

trol registers by different tasks. Violations can be trapped by the MMU and trigger a re-

covery action.

e. Acceptance Tests

This is a very broad term and can be applied to applications tasks and various compo-

nents of the operating system such as the task scheduler and dispatcher. The results of the

target task are checked for acceptability using some criteria which may range from a single

physical reasonableness check such as pitch command not exceeding a certain rate to an

elaborate check of certain control blocks to ascertain whether the operating system sched-

uled all the tasks in a given frame.

It should be noted again that a physica! fault can trigger any of these detection mecha-

nisms just as well as a common mode fault. Therefore, it is necessary to corroborate the

syndrome information across redundant channels to ascertain which recovery mechanism to

use.

f. Presence Test

Presence test is normally used in FTPs and FTPPs to detect the loss of synchronization

of a single channel due to a physical fault. However, it has also been modified to detect a

total loss of synchronization between multiple channels of an AIPS FTP. This is an indi-

cation of a common mode fault. This technique can be extended to the FTPP as well.
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8.4.3.2. Common Mode Fault Recover3,

The recovery from CMF in real time requires that the state of the system be restored to a

previously known correct point from which the computation activity can resume. This as-

sumes that the occurrence of the common mode fault has been detected by one of the tech-

niques discussed earlier and that its source has been identified.

a,

bo

c°

Exception Handlers: If a common mode fault causes an Ada exception or a hardware

exception to be raised, then an appropriate exception handler that is written for that ab-

normal condition can effect recovery. The recovery may involve a local action such as

flushing input buffers to clear-up an overflow condition or it may cascade into a more

complex set of recovery actions such as restarting a task, a virtual group or the whole

system.

do

Task Restart: If the errors from CMF were limited to a single task and did not propa-

gate to the operating system, then only the affected task needs to be restored and/or

restarted with new inputs. The state can be rolled back using a checkpointed state from

stable storage. Recovery is then effected by invoking an alternate version of the task

using the old inputs assuming that the fault was caused by the task software. This is

termed the backward recovery block approach. If the fault is caused by a simultaneous

transient in all redundant hardware channels then the same task software can be re-exe-

cuted using old inputs. This is termed temporal redundancy. Alternatively, forward

recovery can be effected by restarting the task at some future point in time, usually the

next iteration, using new inputs. This assumes that the fault was caused by an input

sensitive software that will not repeat with new and different inputs.

Virtual Group Restart: In case the CMF resulted in the loss of synchronization, then

redundant channels must be re-synchronized before rollback can begin. Furthermore,

the state of the virtual group must be restored before resuming computational activity.

System Restart: Finally, if all else fails the whole system can be restarted in real time

and a new system state established with current sensor inputs.
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8.4,3,,t. Performance Overheads of Common Mode Fault Tolerance Techniques

The common mode fault avoidance and fault removal techniques can increase the devel-

opment cost of the program but generally do not result in an operational performance

penalty. By contrast, the fault tolerance techniques can cause significant performance

overheads. Therefore, not all of the techniques discussed in this section may be suitable

for real time TF/TA/NOE application. Although it is difficult to quantify the overheads

without a specific system design, one can separate the techniques qualitatively in low,

medium, and high penalty groups.

Low overhead fault detection techniques include watchdog timers, hardware excep-

tions, and presence test since they require ex_ution of zero to a few instructions at infre-

quent intervals. Medium overhead techniques include memory management unit if the

MMU does not add significant number of wait states to memory accesses. Ada run time

checks can potentially result in significant performance penalty and is an example of a high

overhead technique. Finally, acceptance tests can be written to be anywhere from ex-

tremely simple such as a rate or a range check on an output variable to an elaborate program

that duplicates the complete functionality of the program being checked. Thus acceptance

tests can be low, medium or high overhead techniques depending upon their complexity.

Most recovery techniques do not add overheads under nominal, non-faulty operational

conditions. The criterion here is the time-it takes to recover from a fault since the

TA/TF/NOE application tasks cannot be sus_nded for a very long time. The time to re-

cover increases as the level of recovery increases. Thus, exception handlers generally re-

quire the least amount of time, task restart would require a little more followed by virtual

group restart and system restart.

These are only general qualitative observations. Whether or not any of these techniques

will be applicable to AFTA will depend on the specific design parameters to be determined

during the detailed design phase of AFTA.

8.4.3.4. Common Mode Fault Examples

This section describes some of the common mode faults that have been observed over

the years in synchronous redundant Byzantine resilient computing systems at Draper.

What one observes in real time is the effect of the fault, i.e., the error symptom. Manifes-

tations of common mode faults are polygeniC. A given error symptom can be caused by
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severaldifferent CMFs. For example, all members of an FTPP virtual group can go out of

synchronization for a variety of different reasons such as EMI, frame overrun, etc.

Common mode faults are also polysymptomatic. A given CMF can result in different error

symptoms under different conditions. For example, EMI can cause a task in all members

of a virtual group to produce incorrect results or it may cause all members to go out of

synchronization. It is therefore easier to list the observed error symptoms than the causal

CMFs. Table 8-2 lists some of the commonly observed error symptoms, their possible

causes and some plausible means of detection and recovery. It should be emphasized here

that the list is exemplary in nature and is not meant to be exhaustive.
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Table 8-2. Commonly Observed Error Symptoms of Common Mode Faults (Cont.)

Effectiveness 0f Common Mode Fault Avoidance, Fault Removal,

Fault Tolerance Techniques

There are several ways of evaluating the effectiveness of common mode fault avoid-

ance/removal/tolerance techniques. One of the simpler ways is to pair each technique with
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theCMF source against which it is effective. Qualitatively, transient (external) CMFs and

permanent (external) CMFs can be avoided by proper shielding, packaging, thermal man-

agement and conservative design practices (9, 10). All other fault avoidance techniques (1-

8) discussed in Section 8.4.1 will be effective against intermittent (design) faults and

(permanent) design faults. All of the fault _moval techniques described in Section 8.4.2

should be effective in finding design faults. The fault tolerance techniques described in

Section 8.4.3 should be effective against intermittent design faults. Additionally, all fault

tolerance techniques should be able to toleratetransient common mode faults. None of the

fault tolerance techniques can tolerate permanent design faults or permanent external CMFs.

Table 8-3 summarizes these relationships.

Transient (EXT) CMF

Permanent (EXT) CMF

Intermittent

(Design) CMF

(Permanent)

Design CMF

1-8 9,10

X

X
ll,,

X

X

CMFR CMFF

X

X

X

X

Table 8-3. Effectiveness of CMF A/R/T Techniques

Qualitative effectiveness criteria are im_rtant but do not provide the information neces-

sary to determine which techniques one must pursue for the AFTA program. Quantitative

measures would be valuable for this purpose. Unfortunately, the mechanics of how most

common mode faults are introduced is not understood well enough to quantify the fraction

of faults a given technique will be able to prevent, remove or tolerate. There are a few ex-

ceptions to this. For example, one can design a shield of appropriate thickness to prevent

SEU upsets due to high energy particles of a given intensity or interference from HERF of

a specified energy. However, such quantitative data is not available for most design faults

or the techniques to avoid, remove and tolerate such faults.

Page 8-23



At thispoint, then,only experience,anecdotalevidenceandqualitativeandsubjective

argumentscan be used to decide on the relative effectiveness of a particular technique

against a given source of common mode faults.

......................

8.6. Suitability of Common Mode Fault Avoidance, Fault Removal, Fault

Tolerance Techniques for AFTA

In order to determine the suitability of the techniques to deal with common mode faults

for AFTA, it is helpful to divide the AFTA computer system into a hierarchy of elements as

follows.

1.

1.1

1.2

1.3

1.4

1.1.1

1.1.4

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3.1

1.3.2

1.3.3

1.4.1

1.4.2

1.4.3

AVI'A Computer System

Hardware

Software

Power

Algorithms

Processor Element (CPU, FPU, MMU, Memory, Bus Interface,

NE Interface)

I/O Element (CPU, Memory, Bus Interface, I/O Interface)

Network Element (Scoreboard, Global Controller, Voter, Fault

Tolerant Clock, Bus Interface, NE Interface)

Monitor-Interlock (Watchdog, Voter, Output Enabler)

Ada Run Time System

Core FDIR

I/O Services

Intercomputer Services

Applications Software

A/C Power Source

FCR Power Source

Monitor-Interlock Power Source

OMI

Clock Synchronization

Syndrome Analysis

Once the hierarchy has been developed to a sufficient depth, one can make a 2-dimen-

sional matrix where one dimension is the lowest level AFTA element and the other dimen-

sion is the CMF A/R/q" technique. We would then choose to apply certain techniques to
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certainAFTA elementsbasedon the effectiveness criteria discussed in Section 8.5 as well

as the following additional criteria.

1. Cost

2. Schedule

3. Maturity of technique/tool

4. Added Complexity

Since the AFTA program is an engineering endeavor constrained by a fixed budget

and schedule, one needs to choose the techni_es which are mature, timely and within the

resource constraints of the AFTA program. An additional criterion is the extra complexity

added by the technique. If the added complexity introduces more design errors than the use

of the technique avoids or removes, then ifW-tiild be a self-defeating exercise. Of course,

the lack of firm quantitative data on the effectiveness of the techniques and the added com-

plexity makes these decisions more subjective than objective.

The following discussion applies to the l_fig term AFTA development program outlined

in Section 1. The time-span covered here includes conceptual study phase, dem/val phase,

FSD phase, operational phase and p3I. A subset of the techniques will be selected in co-

operation with the Army and NASA for dem0-ristration on the AFTA brassboard.

1. AFTA Computer System

Table 8-4 summarizes the choice of CMF A/R/T techniques for each element of the

AFTA hierarchy based on these criteria. TK_°humbers and letters in the table refer to the

techniques discussed in Sections 8.4 - 8.6. At the system level (1.0 AFTA) the AFTA Ar-

chitecture is designed to avoid CM faults (fault avoidance technique 5). For example, the

Byzantine Resilient Virtual Circuit (BRVC) abstraction embodied in the FTPP hides the

complexities of inter-processor communication in the presence of faults from the applica-

tions software. Any extensions to the architecture proposed during the brassboard, FSD

and subsequent program phases will have to pass the test oi_n0t violating-the BRVC and

other complexity-reducing architectural attn_u_s before they can be implemented.

The table also indicates that Design Reviews and Testing (fault removal techniques 1

and 3) will be used to remove CM faults afle-vel 1.0. The asterisk implies that FR tech-

niques 1 and 3 will be used at all levels of hierarchy below that level as well. At the system

level, the only recovery technique is d (restart the whole system and establish a new system

state with current sensor inputs). ............
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2. Hardware

All of AFTA hardware elements will be designed and/or procured in accordance with

MIL-STD 883C and conservative design practices will be followed (FA technique 9) and

appropriate shielding, packaging and thermal management techniques (10) will be utilized.

The Processor Element and the I/O Element are Non-Development Items in the AFTA

architecture. Mature Components (3) that comply with military or de facto commercial

standards (7) will be procured for the PE and IOE. Additionally, formally verified PEs (2),

if available in the AFTA FSD time-frame, can be used at least for the AFTA hard core

functions. The hard core functions include the redundancy management tasks and the

safety-critical flight control tasks. Using formally verified PEs for all the AFTA functions

may not be practical due to their limited throughput in comparison with mature but formally

unverified PEs.

Watchdog timers and hardware exceptions (a and b) will be used to detect CM faults in

real time in the PE. For real time recovery, redundant PEs will be resynchronized (c), if

necessary.

Most of the Network Element will be designed using Design Automation Tools (4). In

particular, the Scoreboard, the Global Controller and the Voter and Fault Tolerant Clock

will be described at least at the behavioral level using VHDL. This description may also be

carried to the structural level. Formal methods (1) should also be applied to the NE hard-

ware design. All five major blocks of the NE should be formally specified at the abstract

finite state machine level. Formal verification should be carried down through the detailed

hardware design to the Register Transfer Level (RTL).

In the case of ASICs, the logic synthesis from VHDL descriptions (structural and be-

havioral) will also utilize design automation tools. Candidates include LSI Logic's Silicon

1076 tool suite and Autologic and GDT Silicon compilers.

A software simulation (2) of the NE will be constructed. The primary purpose of the

NE simulator is to provide to AFTA system software developers a substitute for the NE

hardware until such time as the hardware becomes available. However, the simulator can

also be used to verify the functionality of the NE design. This can be accomplished by

comparing the NE simulator's response to the AFTA system software to the virtual pro-

gramming model of the NE specified by NE designers.
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Hardware fault injection (4) will be used in all parts of the NE hardware to uncover CM

faults.

To detect CM faults in real time in the _, the presence test (f) will be employed. This

would detect a loss of synchronization of NEsl To recover from this situation, a reset will

be asserted by the processors using the fibeibptic links which should force NEs to resyn-

chronize.

The Processor Bus Interface of the _i_ili be designed using mature components (3)

as will the NE-NE interface, ii

The Monitor-Interlock will be subject_ (0 hardware fault injections (4) to uncover CM

faults.

3. Software

Formal methods (1) should be used to specify selected parts of the AFTA system soft-

ware and applications software. A candidate language for formal specification of software

requirements is Z [Spi891. Selected parts of the software should also be formally verified.

A candidate tool for verifying the correctness of Ada software is Penelope [Hir90]. Pene-

lope is an interactive system that accepts pr0_ams from a subset of Ada and formal specifi-

cations for them. It generates verification _nditions which are statements in first-order

logic. Proof of these statements implies thafthe program satisfies its specifications.

The AFTA software will use the DoD Specified standards (7) such as the programming

language (Mil-Std 1815a, i.e., Ada). Good software engineering practices (8) will also be

followed in the development of AF'TA softw_e.

All of the system software will be subjeCted to hardware faults as well as data errors

and memory mutations (4). Ada run time checks and MMU (c and d) will be used to detect

CM fault occurrences in real time.

The Ada Run Time System will be designed around a mature Ada-compiler-vendor

supplied RTS (3). Architectural attributes (5)will be used to simplify the design of FDIR,

I/O, lntercomputer services and applications Software.

Additionally, for the applications software, the two candidate approaches to avoiding

CM faults are the use of design automation tools (4) such as the Draper CASE tool, called

IDEA, and the use of design diversity (6) to produce multiple versions from a given set of
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specifications. Acceptance tests can be used to check the reasonableness of the outputs

produced by the RTS and the applications software in real time to detect CM faults. In the

case of CM faults in a single applications task, exception handlers (a) can try to recover

from an abnormal condition. Also, the task can be purged and restarted (b) with fresh in-

puts in the next frame.

As far as CM faults in the power supplies and power distribution system are concerned,

the only recourse is to effect a complete system restart (d). This may be a cold restart if the

system state was not saved. Alternatively, one could provide low voltage detectors which

will force an orderly shut-down of the system, saving the current system state in non-

volatile memory. In this case, a warm restart can be effected when the power comes back

on-line. Low voltage detectors are usually integrated on PEs and cause an interrupt that can

be used to trigger the orderly system shut-down (see Section 4).

Finally, the algorithmic elements of AFTA such as OM1, clock synchronization, and

syndrome analysis are best suited for verification by formal methods (1).
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AFTA

Element

Fault

Avoidance

Fault

Removal

Fault

Detection

Fault

Recovery

1.0 AFTA 5 1*,3* d

1.1 H/W 9", 10"

1.1.1 PE 2,3,7 a,b c
i

1.1.2 IOE 3,7

1.1.3 NE 1 2",4" f* c*

1.1.3.1 SB 4 5

1.1.3.2GC

1.1.3.3 V/F"TC

1.1.3.4 BI

1.1.3.5 NE Int.

1.1.4 MI

1.2 S/W

1.2.1 RTS

1.2.2 FDIR
1,

1.2.3 I/OS

1.2.4 ICS

4

3

1",7",8"

5

4,5,6

1"

1.2.5 Appl. SW

1.3 Power

5

5

4

4*

1.4 Algorithms

1.4.10M1

c*,d*

e

e

1.4.2 Clock

S_,nch.

1.4.3 Syndrome

Analysis

a,b

d

Table 8-4. Application of C_ A/R/T Techniques to AFTA
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8.7. Plan for Implementation of CMF Avoidance, Removal, Tolerance

Techniques

To deploy a fault tolerant computer system that is resilient to common mode faults as

well, the planning must begin at the earliest phase of the program and the plan must be car-

ried out through development and deployment of the product. It is appropriate to begin by

defining a plan of action in the conceptual study phase. Steps leading to the definition of

the plan of action have included the following activities. Sources of common mode faults

in AFTA have been identified. A three-pronged approach to make AFTA CMF-resilient,

consisting of fault avoidance, fault removal, and fault tolerance, has been developed.

Techniques and tools for each of the three prongs have been enumerated. Each of the three

prongs has been matched to the type(s) of CMFs against which it is effective. This section

now outlines the time-line for using various tools and techniques and other actions that will

be required throughout the AFTA life-cycle to make AFTA CMF-resilient.

/L7A. Demonstration/Validation Phase

This phase of the AFTA development will last 36 months. Activities during dem/val

include AFTA detailed design, brassboard fabrication, coding, and integration, demonstra-

tion of brassboard with an application and AFTA validation. Demonstration and validation

activities will be carried out initially at Draper and subsequently at Army AVRADA and also

possibly at NASA Langley Research Center.

If CMF-resilience is a serious goal of the AFTA project, then enough funding should

be found to support the following CMF A/R/T activities during the dem/val phase. (In

practice, the FSD funding levels are typically much higher than the dern/vaI funding levels.

This may necessitate postponing some of the activities from the dem/val to the FSD phase.)

8_7.1. I. AFTA @stem

Any extensions/modifications to the AFTA computer system should be examined for

compliance with the attributes that help reduce, manage and hide the system complexity

(see Section 8.4.1.5).



8.7.1.2. Hardware Design

The Network Element design should be described at the behavioral and at the structural

level in VHDL. The NE hardware should _designed in accordance with Mil-Std 883B/C

for the full temperature range. Conservative design practices should be followed.

Features that will help detect and tolerate CMFs should be designed into the NE. Ex-

amples include a watchdog timer to reset the_ when it goes into an undesired state and

time-outs for PE input/output buffer full cofiditions.

Formal methods should be used to begin the verification process of the NE hardware

design. As a first step, an abstract finite state machine-level specification of the three major

blocks of the NE that are bus-interface-independent, i.e., the Scoreboard, the Global Con-

troller, and the Voter/Fault Tolerant Clock sl_uld be constructed.

Rigorous Preliminary and Critical Design Reviews (PDR and CDR) of the NE design

by peers, superiors, and government contract monitors should be carried out.

8.7.1.3. Software Design

The Dem/Val software should be designed using good software engineering practices

outlined in Section 8.4.1.8. A waterfall soft w_ development methodology, starting with

software requirements specifications and ending with detailed design, should be followed.

Design automation tools such as Drap-er's CASE, HTrs 001, Cadre's Teamwork

should be examined for applicability to AFTA software design and coding.

Selected subset of AFTA system softw--_e shouid be formally specified in the Z ian:

guage or a suitable software specification language. Selected subset of AFTA system

software should be formally verified using Penelope or a suitable software formal verifica-

tion tool.

The software should be coded in Mil-Std I815a Ada language. The Run Time System

should be based on the XD-Ada-supplied and Draper-modified RTS that is currently being

used in the US Navy's SSN-21 Seawolf Ship Control Computer and has also been ported

to the FTPP Cluster C2+.

System software developed under AIPS, Seawolf and FTPP projects such as I/O Sys-

tem Services and Inter-Processor Communications Services should be examined for AFTA
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reuse. CAMP software libraries should be acquired and examined for applicability to

AFTA.

CMF detection and recovery mechanisms such as those discussed in Sections 8.4.3.1

and 8.4.3.2, respectively, should be designed into the AFTA operating system. These

techniques should be sufficiently broad to cover the commonly observed error symptoms

of CMFs presented in Table 8-2.

Rigorous Preliminary and Critical Design Reviews (PDR and CDR) of the software

design by peers, superiors, and government contract monitors should be carried out.

8.7.1.4. Hardware-Software Test and Integration

The primary emphasis during the integration phase will be on fault removal techniques.

The three major techniques to be used during this phase are testing, fault/error injection,

and discrepancy reporting.

Software testing should follow the unit, module, and functional testing paradigm. The

major complexities of the AFTA architecture are in the dimensions of hardware redundancy

and parallel processing. The AFTA architecture hides the redundancy dimension from

most of the software by providing a Byzantine Resilient Virtual Circuit abstraction. This

will allow all of the system software, except FDIR, to be tested in a non-redundant envi-

ronment. The parallel processing dimension is also hidden from applications software by

the inter-processor communication services. The testing of most AFTA software can there-

fore utilize the tools and techniques developed for conventional computer architectures.

For the FDIR, inter-processor communications services and possibly some I/O services, it

will be necessary to develop a more sophisticated debugging environment. It is essential to

provide software developers debugging tools that gives them visibility into the workings of

the parallel-redundant computer. Development of such a debugging environment should be

a priority of the AFTA dem/val phase.

Hardware testing during dern/val mainly pertains to the NE which can be tested using

traditional hardware testing techniques if the design does not contain any ASICs. The NE

simulator should be used to verify the NE functionality against the NE virtual programming

model specified by the hardware designers. The design of the NE hardware, in turn,

should be verified against the NE simulator.
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Discrepancyreportsshouldbefiled St_ing with the testing phase. This activity should

continue through various stages of hardw_-_bftware integration. As design and manufac-

turing errors are discovered and fixed, tests should be rerun to duplicate the discrepancies.

Once the system has been integrated, it _buld be subjected to extensive fault and error

injections with and without applicationg__:ode executing. Initial testing will be with

faults/errors in a single fault containment re,on and only in the NE. System parameters of

interest such as fault detection, identification and recovery times should be recorded.

Cause of any faults not detected, misdiagnosed, or improperly recovered from should be

identified. Impact on performance should be evaluated to ascertain that no scheduling

dead-lines were missed due to fault handling transients in the system performance and no

unexpected data corruption occurred. Subs_uently, common mode faults should be in-

jected to test AFTA's ability to tolerate C_s'

8.7.2. Full Scale Development Phase

The CMF A/R/T activities during the FSD phase parallel those during the dern/val

phase. However, they will be on a much l_ger scale.

For example, the formal specifications of software, applied to a small subset of soft-

ware during the dem/val phase, should be carried to as much software as possible. The

formal description of the NE at the finite state machine done during the dem/val phase

should be carded down to the gate level. _ Formally verified PEs should be examined for

inclusion in the FSD hardware demonstratio_:

The CASE tools for software design an d development should be applied more exten-

sively across a broader spectrum of system and applications software. The software devel-

opment should rigorously follow Mil-Spec22] 67a. Extensive simulations of the NE ASICs

designs should be carded out. Multiple versions of flight critical application code should

be developed. ...........

More extensive fault detection and recovery techniques should be designed into the

AFTA system software, the NE and the PEs.

Same fault removal techniques as those in the dem/val phase will be applied here as

well. However, their application should be much more extensive. The testing should be

over a wider input range. The DRs should be logged with enough information to construct
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thesoftwarereliability growth models. The fault/error injection should be expanded to

cover the PEs and the IOEs as well as the NE.

A closed loop testing of the complete AFTA system including the computer and I/O

devices tied to a dynamic simulation of the helicopter/ground vehicle should be carried out

under normal conditions, with faults, and under maximum application load and faults.

The hardware should also be subjected to various Environmental Screening and Stress

(ESS) tests. Any component failures should be examined for design errors and corrected.

8.7.3. Production Phase

The major sources of common mode faults in the production phase are the manufactur-

ing defects. Appropriate quality control measures are necessary to ascertain that the AFTA

systems are manufactured in accordance with design specifications. It is also very impor-

tant to track the changes in the system requirements that affect the AFTA design very care-

fully. If design changes become unavoidable due to changing requirements, it would be

necessary to go through the critical steps of the previous two phases to make sure that the

design changes do not introduce new errors.

8_7.4. Deployment Phase

When AFTA systems are deployed in the field, data on faults, errors, failures, and

anomalous behavior should be collected and analyzed. The cause of each event should be

examined and categorized as a random hardware fault or a CMF or a potential CMF.

Sometimes a design error can masquerade as a random hardware fault as, for example,

when it causes only a single fault containment region to fail. Therefore, it is important to

do the cause and effect analysis for each observed event. This feedback can then be used to

remove the source of the CMF. The feedback process should also be used to examine the

efficacy of the three-pronged approach, i.e., CMF avoidance/removal/tolerance techniques.

Every CMF that slips through this process should be examined to determine the effective-

ness and the weaknesses of various techniques in avoiding, removing, and tolerating

CMFs. The field data should be studied with the goal of improving the CMF A/R/T ap-

proach.
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8.7.5. Pre-Planned Product Improvement Phase

Ideally, all of the CMF A/R/T techniques Suggested in this report should be applied to

the development of AFTA during the de_val and the FSD phase. However, it may turn

out that the AFTA schedule and the availabil°iiy of the tools and techniques do not coincide.

In that case, some of the activities can be deferred for the Pre-Planned Product Improve,

ment (p3I) phase. For example, if a formally verified microprocessor is not available in

time to meet the FSD schedule, it can be added later on to the AFTA as a part of the p3I ac-

tivity.
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9. Analytical Models

This section describes the quantitative models are to be used in analytically evaluating

AFTA. Quantitative models are present_ for effective throughput, effective intertask

communication bandwidth and latency, effective input/output bandwidth and latency, reli-

ability and availability under two typical AFTA redundancy management policies, weight,

power, volume, and life cycle cost.
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I PE throughput,

Context switchoverhead

# tasks perframe

OS overhead
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I LRM failurerates
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Figure 9-1. AFTA Methodology Information Flow
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The inputs to these models come from MIL-HDBK-217E failure rate data, empirical

test and evaluation, and other sources. The relationship among the analytical models, the

model inputs, the AFrA configurable parameters, and the AFTA requirements, is depicted

in Figure 9-1.

9.1. Performance Model

9.1.1. Delivered Throughput

In the initial stages of architecture synthesis only overall throughput requirements are

available, while in the early stages of development the effective throughput of a given archi-

tecture can in turn only be roughly estimated. A rough delivered throughput model is suit-

able for this situation. In this model, one begins with the raw throughput, expressed in

suitable terms such as DAIS MIPS. Denote this quantity XVG, raw. The VG throughput

estimate is reduced to a value denoted XVG. delivered by overheads such as the rate group

(RG) dispatcher, synchronization delays, RM overheads, contention effects, and context

switches.

The effective throughput available to an application running on a parallel processor is a

strong function of the efficiency of the mapping of the application task to the parallel pro-

cessing resources, and is impossible to plausibly generalize. Therefore in the current report

we will calculate the delivered throughput of an AFTA simply as the sum of the through-

puts of its constituent VGs. Thus, in an AFTA configuration consisting of NVG VGs each

having throughput XVGi, delivered, the delivered throughput is

XAFTA, delivered = NvGXVG, delivered (9.1)

Estimation of a VG's delivered throughput requires a frame-by-frame analysis of the

AFTA OS and redundancy management (RM) overheads. For convenience, a diagram of

the RG frames used by the Ab-TA scheduler is repeated below.

Page 9-2



/

minor frame index:

0 |I !2 13 14 15 6 17
| ......._,..........•............k..........,,,_..........,L_......._,i,...........,.................

I_ F rama .%_ Fzame %%]_,'_F ramo .%_L_F zame X_]_N Frame _Fr amo .%'q%_ F zano .%_ F ramo %_

!

" i .i .'

Figure 9-2. Mapping of RG Frames to Minor Frames

The overall approach to determining AFTA OS and fault tolerance-related overhead,

and hence delivered throughput, is to calculate and verify the time required to perform these

functions. Time is used instead of a parameter such as the number of instructions required

to execute a particular overhead function because time is a directly measurable and therefore

verifiable quantity, whereas instruction coun_ are notoriously misleading when used to es-

timate performance. In addition, many of the overheads include operations to which an in-

struction count and processor throughput are irrelevant, such as accessing the network ele-

ment. As the detailed design of AFTA proceeds, the overhead time estimates will be re-

fined and correlated closely to parameters such as processor instruction execution rate and

Network Element bandwidth. However, it is worth noting that, even at validation and veri-

fication time, the execution times are primary measured parameters.

At each minor frame boundary, a particular set of RGs have completed their iterations

and are ready to initiate a new iteration. These RG sets as a function of the frame boundary

are shown in Table 9-1.
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Frame Boundary Completed RGs

7-0 4,3,2,1

0-1 4

1-2 4, 3

2-3 4

3-4 4,3,2

4-5 4

5-6 4, 3

6-7 4

Started RGs

4,3,2,1

4

4,3

4

4,3,2

4

4,3

4

Table 9-1. Completed/Started RGs vs. Frame Boundary

At each minor frame boundary several functions are executed which contribute to the

OS overheadt. The chime interrupt handler synchronizes the VG and performs time man-

agement functions; subsequently the dispatcher performs other metabolic housekeeping.

The time required to perform these functions is denoted

THK

Subsequently, the dispatcher transmits all messages emanating from RGs whose

frames have just completed. The time required to perform this function depends on the

number of RGs that have just completed, the number of tasks in each RG, the number of

messages sent by each task, the size of each message, and contention with other VGs for

the Network Elements' message passing services. The time required to perform this is de-

noted

]q_ss,_m.i

TSEND. i = 2 TSU+ SRTp
k=l

(9.2)

where NMESSAGES, i = the number of messages sent in frame i, TSU is the setup time re-

quired to begin sending a single message, Sk is the size (in Network Element packets) of

outgoing message k, and rip is the incremental time required to send one packet.

Next, the dispatcher updates the incoming message queues for all tasks which have re-

ceived messages during the previous frame, and updates the frame markers for tasks in

t See Section 5.3 for a detailed description of the dispatcher functionality.

i

Page 9-4



RGswhich will be started on the current frame boundary. The time required for this de-

pends on the number of RGs that have just completed, the number of tasks in each RG, the

number of messages received by each task, and the size of each message. The time re-

quired to perform this is denoted

TRECEIVE, i .... E TSU+ SkTp
k=l

(9.3)

where (overloading names to avoid needless notation proliferation) NMESSAGES, i = the

number of messages received in frame i, TSU is the setup time required to begin receiving a

single message, Sk is the size (in Network Element packets) of incoming message k, and

Tp is the incremental time required to read grid process one packet from the Network Ele-

ment*.

Finally, before suspending itself, the dispa---icher enables execution of all tasks residing

in RGs which can be started on the currenft_ame boundary by setting an event for them;

the time required for this depends on the ti_ required to set an event, the number of RGs

to be started in the next frame, and the number of tasks in each RG. The time required to

perform this is denoted ...........

TEV. i = NTASKS, iTEv (9.4)

where NTASKS, i = the number of tasks t0b-e started in frame i, and TEV is the time re-

quired for the dispatcher to set an event. ..........

TD, major, the time consumed by the dispatcher over all eight minor frames (i.e., one

major frame) is estimated as:

7

TD. major = E(TI-_ + TSEND.i + TRECEIVE, i + TRV,i+I)
i=0

(9.5)

where i refers to the minor frame just completed, and is computed modulo 8.

* Strictly speaking, a recipient PE reads a packet from an NE upon reception of a packet

delivery interrupt, according to the method outlined in Section 4, and this overhead is

spread out within a frame. The current approach to estimating the overhead consumed by
this process is to lump it all together at the frame's end.
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The FDI task immediately follows the dispatcher in each minor frame. This task exe-

cutes a complex suite of functions which are described in Section 5. The exact set of func-

tions included in the FDI task is not known at the current phase of development and in fact

may vary from mission to mission depending on a mission's temporal constraints. At the

current level of modeling granularity, the temporal overhead due to FDI task execution in a

minor frame is abstracted as TFDI, minor, and the total temporal overhead due to FDI task

execution over the major frame is therefore

TFDI, major = 8TFDI, minol (9.6)

The context switch time incurred by the R4 tasks, the dispatcher, and the FDI tasks in

the major frame is equal to the context switch time per task (Tcs), times the number of R4

tasks (NTASKS, R4 +2), times the number of minor frames per major frame (8):

TCS, major, R4 = 8(NTASKS.R4 + 2)Tcs (9.7)

For lower-frequency RGs, upper bounds for the context switch times are computed.

The context switch time incurred by the R3 tasks is upper-bounded by the context switch

time per task (Tcs), times the number of R3 tasks (NTASKS, R3) plus the maximum num-

ber of times that RG R3 can be preempted in a major frame (4), times the number of minor

frames per major frame (4):

TCS, major, R3 = (4NTASKS,R3 + 4}Tcs (9.8)

The context switch time incurred by the R2 tasks is upper-bounded by the context

switch time per task (Tcs), times the number of R2 tasks (NTASKS, R2) plus the maximum

number of times that RG R2 can be preempted in a major frame (6), times the number of

minor frames per major frame (2):

Tcs. major, R2 = (2NTAsKS,R2 + 6)Tcs (9.9)

The context switch time incurred by the R1 tasks is upper-bounded by the context

switch time per task (Tcs), times the number of R1 tasks (NTASKS, R1) plus the maximum

number of times that RG R 1 can be preempted in a major frame (7), times the number of

minor frames per major frame (1):

Tcs, major, RI = (_qTASKS,R1 + 7)Tcs (9.10)
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by
The total temporal overhead per major _ame due to context switches is upper-bounded

Tcs, major = Tcs, major, R4 + Tcs, major, R3 + Tcs, major, R2 + TCs, major, R1 (9.11)

The total temporal overhead per major frame due to the dispatcher task, FDI task, and

context switches, is

TOVERHF-AD,major = TD, major + TCS, major + TFDI, major (9.12)

Let Tmajor denote the period of a majof_arne. Then the fractional overhead due to the

dispatcher task, FDI task, and context switches, is upper bounded by

OH = TOVERnE_' major

Tmaj °r (9.13)

Let XVG, raw denote the raw throughput of an AFTA VG. As a simple first-order engi-

neering approximation of the VG's deliWred throughput after deduction of the various

overheads, one may use ........

X VG, delivered = {1-OH} X vc. raw (9.14)

9.1.2. lntertask Communication

Intertask communication is achieved in AFTA via sending and receiving messages ac-

cording to the design described in Section_SS _ For uniformity of programming and trans-

parency of distributed processing resourc_message passing is used both for intra-VG

and inter-VG communication. As descri_qn Section 5, RG tasks may enqueue messages

for subsequent transmission by the AFTA inTdhask communication servicest. The time re-

quired to enqueue a message is denoted TENQ_UE MESSAGE and is a parameter to be ver-

ified during the Dem/Val. Upon c0mpletid_:_of an RG frame, the AFTA intertask commu-

nication services transmit packets emanating from the just-completed and all lower-fre-

quency RGs to the destination VG via theNetwork Elements. All messages emanating

from a VG are transmitted on a RG boundS, which is in turn determined by the sending

VG's timer interrupt. This has the intent-of minimizing the jitter and skew with which

messages are transmitted by a VG. It als0°h_is the effect of delaying the transmission of a

t In extenuating circumstances, RG4 tasks may send messages immediately without

waiting for a frame boundary because they _enonpreemptible.
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task'smessages untilthe end of itsRG frame, so the message latency,as measured with

respecttothe moment the sending taskemits the message, can bc up toone RG frame,de-

pending upon where inthe RG frame thetaskisscheduled. This isillustratedgraphically

inFigure 9-3,in which each RG has one message tosend,each denoted by a boldface m:

RG4 enqueues ml, RG3 cnqucues m2, RG2 cnqueues m3, and RG I cnqucues m4. The

messages arctransmittedby theAFrA communication servicesattheframe boundariesThe

latencyincurredby message m3 ishighlightedinthefigure.

I illl_H

o ii i2 i3 _4 is "6 7 i

_ ,a _\\_ _ ,,X _ ,.iv " '

• s x ! !

sent ml ml rnl ml ml ml ml ml

m2 m2 m2 m2

m3 m3

m4

Figure 9-3. RG Message Passing

The time at which a task is scheduled in its frame and the particular frame within which

it is scheduled have a significant impact on intertask communication latency and bandwidth.

Let Tlatency, RG denote the time from message enqueueing (the boldface ms in Figure 9-3)

to the task's next RG frame boundary, at which point the message is transmitted by the

communication services (the plainface ms in Figure 9-3). While it must be empirically vali-

dated to obtain an accurate estimate, this parameter is largely under the control of the appli-

cation designer. However, it is not recommended that Tlateney, RG be relied upon for cor-

rect execution of the application task because Tlatency, RG depends upon the relationship

between the sending task's invocation of the message passing services and the frame inter-

rupt. This in turn depends upon task execution times, which may vary widely from itera-

tion to iteration, inducing unwanted jitter, skew, and validation difficulties. It also makes it

more difficult to modify the tasking schedule when desired. It is preferable to specify tim-
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ing parameters with respect to frame boundaries, which, because they are determined by

highly accurate crystal oscillators on the PEs, have low skew, low variance, and are more

validatable. Consequently, in the following analysis all timing parameters will be specified

and verified with respect to the timer interrupt demarcating the boundary of the just-com-

pleted RG frame.

On frame boundaries, the AFTA communication services transmits all enqueued pack-

ets from completed RGs into the Network Element. The latency incurred by this function

has two components. First, each outgoing packet must be written over the PE-NE bus into

the Network Element; let TXMIT denote this stochastic time interval, which must be paid for

each packet to be transmitted. Finally, let TNE denote the stochastic time interval required

for the Network Element ensemble to perform the requested message transmission accord-

ing to the exchange rules described in Section 4. The total time required to send a single

message of size SK packets using this procedlure is

Tsl_l'a) = Si_ TxMrr + TI_) (9.15)

The packet transmission procedure is illus_ted in Figure 9-4.

Timer

Interrupt

PE

NE

1 2

dispatcher set up packets
_hdus ekeepin_ °utg°ing_ to :sl

t ransmit si

packets

3

repeat

I, 2, 3

for

all

outgoing

messaqes

Figure 9-4. Outgoing Message Processing

Messages arrive at a destination VG at arbitrary times during a frame. The recipient

PEs of the destination VG receive a packet delivery interrupt from the NE and read the

packet from the NE into the PE's private memory. (The loss of throughput incurred due to

this asynchronous activity is debited in the delivered throughput model.) However, the

packets are not assembled and made available to destination tasks until the termination of
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theRGhostingthedestinationtask;thereforethe latency (the time between message arrival

and delivery to the destination task) is a function of the phase relationship between message

reception and the frame boundary. Again, this phasing cannot in general be counted upon

to yield a known timing relationship, so the timing specification should be performed with

respect to the destination task's RG frame boundary following the reception of the last

packet of a message. If some desired phase relationship must be maintained, it can be ob-

tained via the frame phasing technique described in Section 5. Upon a frame boundary

boundary, the AFTA intertask communication services process the received packet queue,

constructing and delivering messages to tasks which are at an RG boundary. Note that,

unless it is a latecomer, the message is already in the PE's private memory because it was

read from the NE during the packet delivery interrupt service routine. The time required to

perform incoming message processing is an increasing function of the number of new mes-

sages to he assembled, the number of packets received in the previous frame, and the num-

ber of new messages completed and ready for delivery to destination tasks. Denote this

time TRECEIVE MESSAGE. A plausible parametric formulation for this time interval is cur-

rently unknown and will be developed and verified during subsequent phases of the AFTA

development.

9.1.3. Input/Ou _tput

The input latency is defined to be the time interval between the sampling of a physical

quantity by an input device and the delivery of the digital representation of that quantity to

the recipient task. The output latency is defined to be the time interval between the produc-

tion of a digital quantity by a source task and the delivery of that digital quantity to the de-

vice which converts that digital quantity to a physical quantity.

As described in Sections 4 and 5, AFTA will support numerous I/O devices and con-

trollers, including FTDB, MIL-STD-1553, mass semiconductor memory, rotating media

memory, discretes, analog, RS232, Ethernet, and possibly others to be determined at a fu-

ture date. The techniques used for accessing these devices have been partitioned into two

classes. In the first technique, known as concurrent I/0, an I/O task resident on one or

more members of a VG responsible for accessing an I/O device initiates an I/O transaction

by writing commands and data to the device. Immediately thereafter, the VG may initiate

other I/O, resume processing other I/O, or resume to other tasks while the I/O transaction

completes concurrently, under control of an autonomous I/O controller. After a specified

time interval, the I/O system services may return to the autonomous controller to process

the input and/or status data resulting from the transaction. It is the intent that at any given
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timeseveralconcurrentI/O transactionswill bein progress, probably under the control of

several VGs, in order to maximize AFTA I/O performance. Concurrent I/O is expected to

be useful for operation of complex I/O devices such as network controllers and rotating

storage media, where it is a waste of CPU time to wait around for lengthy transactions to

complete. The second I/O technique available in AFTA is called sequential llO, in which

one or more members of a VG responsible for accessing an I/O device performs an I/O

transaction and wait until the I/O activity is completed before initiating other I/O or resum-

ing to other tasks. Sequential I/O is suitable for accessing fast, low-latency devices which

may require atomic access, such as discrete input and output complexes, analog to digital

converters, digital to analog converters, etc. It is simpler than concurrent I/O, but should

be used with discretion since it nonpreemptively monopolizes the VG.

Prior to being provided to an output device, data may be transferred from the VG(s)

hosting the source task to the VG(s) responsible for the I/O activity, or, if they are one and

the same, the output data may be voted priorto being output; both such actions utilize the

Network Element message passing capabilities In addition, input data may have to be

transferred from the I/O VG(s) to the destination VG(s) using one or more Class 2 ex-

changes. A subset of the large number of possibilities is enumerated in Section 5.

During the AFTA Conceptual Study, it was judged that generation of an I/O perfor-

mance model general enough to describe the disparate I/O devices, access techniques, and

input and output data distribution options possible in AFTA would be quite time-consum-

ing. Therefore it has been decided that, for reasons of expediency, construction of the

AFTA I/O performance model(s) will be de_rred until more information is obtained about

anticipated I/O devices; this will occur during the Detailed Design phase of the program.

9.2. Reliability and Availability Models

The reliability and availability of an AFTA implementation is a function of the number

of FCRs and PEs, the VG redundancy levels, the mission environment, the operational and

maintenance scenario, and fault recovery procedures. Precise mathematical definitions of

the terms "reliability" and "availability" are used in this report. While high reliability and

availability contribute to dependable operation, they should not be construed to exhaus-

tively connote all attributes of dependable systems.

AFTA fault recovery options are enumerated in Section 5.6.6, and each one has a

strong impact on the overall Ab-TA reliabil!ty and availability. Since the construction of re-
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liability modelsfor all the options described in Section 5.6.6 is beyond the scope of the

Conceptual Study phase, two have been selected for evaluation as being appropriate for

two extremes of temporal constraints which might be imposed on AFTA.

The first class of options, of which the graceful degradation and Network Element

masking in Section 5.6.6 are examples, are appropriate for an operational mode in which

little if any time is available for fault recovery. In this case, a faulty component in a redun-

dant VG or an NE is immediately disabled upon detection, with no lengthy fault recovery

attempted. No effort is made to discriminate between transient and permanent faults for the

purpose of performing on-line recovery, in effect treating all faults as permanent until a

more relaxed operational regime is entered. This option has the advantage of incurring no

dropout of functionality, but has the disadvantage of irreversibly reducing the redundancy

level of the faulted VG and hastening its demise due to redundancy exhaustion. Therefore

it may be viewed as being best suited for short missions having fast real-time constraints,

such as real-time control of mission-critical helicopter functions.

Figure 9-5 illustrates this fault recovery option: after the first failure of member A of

quadruply-redundant VG1, the faulted member is disabled, reducing VGI's redundancy

level to triplex. A second failure of one of VGI's members, say B, reduces its redundancy

level to "degraded triplex." For a degraded VG, the Network Element's main data path

packet voter masks the input from the faulted member and does not include it in the vote.

The Scoreboard, however, continues to consider a degraded VG's faulted channel when

calculating the VG's voted Output Buffer Not Empty (known as OBNE, an indication that

the VG has a packet to be transmitted from its Output Buffer) and voted Input Buffer Not

Full (IBNF, an indication that the VG is capable of receiving at least one packet in its Input

Buffer)t. This is to allow a faulted member of a degraded VG to remain in synchronization

with its parent VG to facilitate recovery operations. This capability is more robust and use-

ful for degraded quadruplex VGs than for degraded triplex VGs.

A third failure in VG1, say of member C, reduces its redundancy level to simplex, and

a fourth failure results in the loss of the functionality supported by VG1. The probability of

successfully transitioning from a faulted degraded triplex VG to a nonfaulty simplex is

significantly less than unity, and is represented by the "duplex coverage," CD.

J" See Section 4 for a discussion of this terminology.
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Figure9-5. GracefulDe_dation of QuadruplexVGI

Whena fault recoverytime on theorderof a secondof two is permissible,a wider

rangeof fault recoveryoptionsareavailable. Representativesof this classof optionsare

listedin Section5.6.6asprocessor resynchronization, processor reintegration, processor

replacement, processor replacement with initialization, task migration, and Network Ele-

ment resynchronization. All of there recovery options are characterized by their capability

to seek and find components sufficient to maximize the likelihood of forming a desired con-

figuration of redundant VGs, followed by either initializing or copying the state of the

newly reintegrated component into agreement with the surviving members of the faulted

VG. As is mentioned earlier, this process, while maximizing the effective use of the re-
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configurable AFTA components, consumes one to two seconds to perform. As an example

of such a strategy in the context of the previous example, we reconsider the case of a pro-

cessor replacement fault recovery option applied to VG1 t. After a failure of member A of

VG1, VGI's redundancy level can be restored by switching in (say) the PE adjacent to

member A. After the second failure of member B, a spare processor may be reintegrated,

again restoring VGI's quadruplex redundancy level, and so on and so forth (Figure 9-6).

This can continue until all the spares allocated to repairing VG1 are exhausted, at which

point the VG1 fault recovery policy may revert to the graceful degradation policy described

above, or another policy may go into effect.

The more leisurely fault recovery options in this class are more suited to less stressful

real-time operational regimes and missions, such as during the hiatus phase of the flight

mission where availability is to be maximized, or during a long ground mission where one

or two second dropouts are a reasonable tradeoff for significant mission longevity en-

hancement.

t Different VGs may have different fault recovery options, and the same VG's fault

recovery option can vary over the course of a mission.
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Figure9-6. ProcessorReplacementRedundancyManagementfor QuadruplexVG1

The following sections present formulations of the probability that AFTA can perform

its intended functionsl i.e., form the requisite number of functioning VGs, when managed

according to the two fault recovery policies outlined above. Depending upon the use to

which AbTA is put at a given time, a given formulation will be equivalent to either

"reliability" or "availability". For example, when the processor replacement strategy is

used during hiatus to maximize AFTA availability, the formulation will refer to "AFTA

Mission Availability", whereas when it is used to calculate the probability that the Fault

Tolerant Navigation Processor is capable of performing its intended function during a mis-
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sion,thesame formulation yields the "FTNP Mission Reliability". To attempt to generalize

the meaning of the formulations, the following notation is adopted.

The probability that AFTA can perform its intended functions, i.e., form the requisite

number of functioning VGs, when managed according to the graceful degradation class of

redundancy management policies is denoted

PGD

The probability that AFTA can perform its intended functions, i.e., form the requisite

number of functioning VGs, when managed according to the processor replacement class

of redundancy management policies is denoted

PPR

Recall from Section 2 that the reliability of the system is equal to the probability that all

functions needed to execute the mission are operational, or

Rsys = Prob(Fj operational, 'v' Fje S) (9.16)

The Function Reliability is the probability that a given function Fj can be executed be-

cause its resources are operational

RFj = Prob(resourcei operational, V resourcei • Fj) (9.17)

The System Reliability is then

Rsys = Prob(resourcei operational, V resourcei • Fj, V Fj • S) (9.18)

The probability that all needed VGs are functional is

Rsys = Prob(VGi operational, 'v' VGi • Fj, 'v' Fj • S) (9.19)

If all VG reliabilities were independent, this would reduce to

Rsys = 1-I R(VGO

VGIE F) F_S
(9.20)

Unfortunately they are not: they are correlated through their joint dependence upon fail-

ure of FCRs in which they have common members. However, if conditioned upon the
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failureof the Fault Containment Regions in which their members reside, the probabilities

for VG reliability do become independent. For a single VG, one may write

R(VGO = R(VGi I no FCR faults) Pr(no FCR faults)

NNKs

+ _ R(VG i t FCRj faulty) Pr(FCRj faulty)

j=l _

NNEs NNEs

+ KY_ _ R(VGilFCR j faulty and FCRk faulty) Pr(FCRj faulty)Pr(FCRk faulty)

j=l k=l, k#j

(9.21)

where

K-- { 0,NNEs<51, NNEs = 5

For an AFTA consisting of multiple VGs, conditioning the VG reliabilities upon FCR

fault pattern allows us to conveniently express system reliability as a summation of terms,

each of which is a product of independent probabilities, or

Rsys = I-I R(VGi i no FCR faults)] Pr(no FCR faults)

V(3iE F ) FjES ]

+_ H R(VGilFCR n faulty Pr(FCR n faulty)

n=l [VGI_F) Fj_S

NNEs NNEs I" ]

+K | H R(VC lFCRs.andmfaulty)lPr(FCRnfaulty) (FCRmfaulty)
n=l m=l. m:ml.VOt_F) Fj_S

(9.22)

where

NNEs
Pr(no FCR faults) = RFC R
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INNEs_n _-t,,
Pr(FCR n fauky) = Pr(FCR m faulty) = _ 1 rXFCR UFCR

Rx = reliability of component x

Ux = 1-Rx

RFCR = RNERpcRBus

RNE = era'NE t

Rpc = e-XPC t

RBU S = e-_.BUSt

.2,9_20!LFormulation for Graceful Degradation Class of Fault Recovery_

We now present a formulation for PGD, the probability that all VGs needed to perform

the AFTA's intended function are operational when managed according to a graceful degra-

dation class of fault recovery policies. A given number of VGs are needed to perform the

functions, and as their members fail, the VGs' redundancy levels are reduced until the VG

is inoperable.

The overall analytical approach is to formulate an expression for the reliability of a VG

conditioned upon a given FCR failure pattern, assuming a graceful degradation redundancy

management policy. Then, the probabilities of the given FCR failure patterns are calcu-

lated.

Let E(_,, It, t, r) represent the reliability at mission time t of a VG having processor

failure rate _., fault recovery rate It, and redundancy level r, assuming PE faults only. This

is the probability of occurrence of all operational states (redundancy levels of 1, 2, 3, or 4)

of the VG minus the probability that the VG fails due to near-coincident PE faults.

E(;L, It, t, r) =

ci e._._ (l_e__ r(r-1)_, t

It

,r>0

0 ,r<0

(9.23)
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wher_ ci is the probability that a VG of reduh_ncy level i+ 1 can successfully degrade to a

VG of redundancy level i.

If r>l, then

c D i=l

] !.0, i=2

ci = _ 1.0, i=3

 ii0,i--4

If r=l, then

CD=I.O

The parameter CD ranges from 0.5 to 0.90, depending upon the level of effort put into

tolerating faults in duplex VGs. A safe assumption is usually CD = 0.50, since at worst the

redundancy management function can, upon detecting a fault in a duplex VG, randomly

guess which one is faulty and mask it out.

Let nelist(VGi) represent the set of FCRS which contain at most one channel of VGi.

For example, if quadruply redundant VGi- has members in FCRs 0, 1, 3, and 4, then

nelist(VG1) = {0, 1, 3, 4}.

The conditional VG reliability becomes =.......

R(VGi I no FCR faults) = _'(_'PE' IApE, t, redlev0

[

=)E(_'PE, IAPE, t, redlev.), je nelist(VG0
R(VGil FCRj faulty) \E(_'PE, IAPE' t, redlevi-1), je nelist(VG i)

(9.24)

(9.25)

and

R(VG i [FCRs j, k faulty ) =

(
r "-(_'PE' lAPe' t, redlev _, j_ netlist(VG i and k_ nelist(VGO,

E(_'PE, lAr'E, t, redlev i- 1), j_ neflist(VG i and ke nelist(VGO,

E(;L r,E, lA_, t, redlev i- 1), je netlist(VG i and k_ nelist(VG _,

_F-O-pE, IAPE' t, redlevi-2), je neflist(VG i and ke nelist(VGO

(9.26)
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This formulation for the conditional VG reliability is used to compute PGD:

Pc_=[ I_vo,_F, F,_sRC¢Gi' n° FCR faults)] Pr(no FCR faults)

+N_ 1-I R(VGi I FCR n faulty) 1 Pr(FCR n faulty)

n---1 [_t3_EFj FIE$ ]
NNEs NNEs I" 1

+K _ _ / I'I R(VGi I FCRs n and m faulty)l Pr(FCR n faulty) Pr(FCR m faulty)n=l re=l, m__VI31_Ft Fi_S

(9.27)

9_,2.2. Formulation for Processor Replacement Class of Fault Recovery

Let NVG denote the number of VGs required to meet the mission throughput and other

performance requirements, and let redlevi denote the redundancy level required for VGi to

meet its mission reliability requirements. If NVGs of the appropriate redundancy levels

cannot be formed, then AFTA cannot meet its mission requirements. In this section we

produce a formulation that a desired AFTA configuration can be constructed from the PEs

and NEs which are nonfaulty, given a redundancy management strategy from the processor

replacement class. For the following analysis it is assumed that the term VG also includes

the IOCs.

Assume that the fault-free AFTA is composed of NNE Network Elements and hence

NNE FCRs. It is assumed that each VG i must have redundancy level redlevi. Not all

VGs need have identical redundancy levels. A total of at least

NPEs = E redlev i
i=l

(9.28)

PEs are required to form NVG VGs, each VGi of which has redundancy level redlevi.

If the AFTA is composed of 4 FCRs, then to construct the required VG configuration each

FCR must contain at least

N 4 : INPEs/4] (9.29)
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PEs, while if the AFTA is composed of 5 FCRs, then each FCR must contain at least

N5 = [NPEs/5] (9.30)

PEs. Any four PEs resident in different FCRs can form a quad VG and any three a triplex

VG. The probability that the requisite VGs an be formed under a processor replacement

type of redundancy management strategy is .......

PPR = Pr(#PEs per FCR _>N4)Pr(exactly 4 FCRs operational)

+ Pr(#PEs per FCR > N5)Pr(exactly 5 FCRs operational) (9.31)

To meet the mission requirements, each FCR must have either N4 or N5 PEs, depend-

ing on the number of FCRs the Ab'TA configuration possesses. We assume that under

fault-free conditions each FCR has an equal complement of PEs. To increase availability,

spare PEs may be added to each FCR t_o bring the total number of PEs in each FCR up to

NT. If the AFTA configuration possesses 4 FCRs, then NT > N4; if the configuration pos-

sesses 5 FCRs, then NT > NS. The probability that the requisite number of VGs can be

formed is

T R n U (NT_ n)

PPR = t n=N4 PE PE ....

R FCRU FCR

+K
N.r 1n=Ns_ ]

(9.32)

where

RpE _ e'kPE t

RFCR = RNERPCRBUS

RNE = e "_'NEt

Rpc = e'_'PC t

RBUS = e'kBUS t

Ux = 1-Rx
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and

K= { 0, NNEs<51, NNEs = 5

9.2,3, Failtwe Rate Calculation Methodology

For the purposes of reliability and availability calculations, AFTA is partitioned into

LRMs and LRUs, each of which has an associated failure rate. The LRMs include proces-

sors, Network Elements, power conditioners, and input/output controllers. The LRU's

primary contribution to AFTA failure rate is its backplane bus: if the bus fails, then it is as-

sumed that the entire FCR is unusable. Secondary non-Byzantine resilient techniques may

be used in a given AFTA implementation to reduce the probability of FCR backplane bus

failure.

Most AFTA components are Non Developmental Items (NDI), for which failure rates

and plausible calculational means should be provided by their vendor. These are usually

based on MIL-HDBK-217E analyses and are furnished along with the components' docu-

mentation.

In the current analysis, we focus on the estimation and minimization of NE failure rate.

_.2 .3.1. Environmental Effects

The AFTA will potentially reside in a number of different vehicles under a number of

different operational and environmental conditions. These conditions must be specified for

each operational mode of the system.

When possible, the MIL-HDBK-217E will he used to estimate the component failure

rates of the AFTA. CECOM/RAMECES field data will also be used when available.

When component failure rates are estimated using the MIL 217E handbook, the effect of

the operational environment is taken into account by multiplying the component failure rate

by an environmental multiplier HE. Values of liE for monolithic microelectronic devices in

various operational environments are given below.
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Environment

Ground,Benign

Ground, Fixed

Manpack

Ground, Mobile

Airborne, Rotary Winged

Cannon, Launch

II E

0.38

2.5

3.8

4.2

8.5

220.

Table 9-2. Environmental Failure Rate Mul-@Iiers for Monolithic Microelectronic Devices

9.2.3.2. PE Failure Rate Calculations

PE Mean Time Between Failures (MTBFs) are obtained from the board manufacturers

and are summarized in the table below. The failure rates are assumed to be the reciprocal of

the MTBFs. On the whole, the MTBFs cit_y the vendors seem much higher than expe-

rience would indicate. Selected vendors were contacted for details regarding their MTBF

calculation methodology, but no such info_ation was received in time for inclusion into

this report. This information would of course be required for any fielded version of AFTA

as part of the vendors' documentation.

PE Type Environment

Radstone PMV 68M CPU-3A Ground, Mobile, 45C

Lockheed Sanders STAR MVP Airborne, Uninhabited, 40(2

SAVA GPPM Ground, Mobile, 85C*

MTBF

16,982h
,,ll

32,000h

31,000h

li E

4.2

6.0t

4.2

Table 9-3. PE Cited Failure Rate Data

These failure rate data must be converteilTrom the cited environment to the anticipated

operational environment. The technique chosen to approximate this conversion is to mul-

t There are six Aircraft, Uninhabited environments specified in 217E, with liEs ranging

from 3.0 to 9.0; the Lockheed data do not S_cify which is meant. The AUA, Aircraft,

Uninhabited, Attack environment is assumedas it is approximately the numerical mean of
all Aircraft, Uninhabited multipliers.

* This temperature is far above the 50C specified in 217E as being representative of the
Ground, Mobile environment. Moreover, it is inconsistent with the SAVA maximum

operating temperature specification of 78C. It is therefore assumed to be a typographic
error in the draft SAVA standard. ....................
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tiply theMTBF cited by the manufacturer by the cited environment's HE, divided by the

anticipated environment's HE.

9.2.3.2.1. Hiatus: Ground Fixed

The hiatus is assumed to occur in the Ground, Fixed environment as specified in 217E,

with a lie of 2.5.

PE Type MTBF Multiplier

Radstone PMV 68M CPU-3A 28,530h 4.2/2.5 = 1.68

.Lpckheed Sanders STAR MVP 76,800h 6.0/2.5 -- 2.40

SAVA GPPM 52,080 4.2/2.5 = 1.68

2.5

2.5

2.5

Table 9-4. PE Hiatus Failure Rate Data

9.2.3.2.2. Aircraft Mission

The aircraft mission is assumed to occur in the Aircraft, Rotary environment as speci-

fied in 217E, with a HE of 8.5.

PE Type MTBF Multiplier

Radstone PMV 68M CPU-3A 8,391 h . . 4.2/8.5 -- 0.49

Lockheed Sanders STAR MVP 22,588h_ ' 6.0/8.5 = 0.71

SAVA GPPM 15,190 4.2/8.5 -- 0.49

lie

8.5

8.5

8.5

Table 9-5. PE Aircraft Mission Failure Rate Data

9.2.3,2.3. Ground Mission

The ground mission is assumed to occur in the Ground, Mobile environment as speci-

fled in 217E, with a liE of 4.2.

PE Ty_

Radstone PMV 68M CPU-3A

Lockheed Sanders STAR MVP

MTBF

16,982h

Multiplier

4.2/4.2 = 1.0

45,760h 6.0/4.2 = 1.43

SAVA GPPM 31,000 4.2/4.2 = 1.0

lie

4.2

4.2

4.2

Table 9-6. PE Aircraft Mission Failure Rate Data
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9.2.3.3. NE Failure Rate Calculations

9.2.3.3.1. Methodology

The AFTA Network Element failure rate is calculated using the MIL-HDBK-217E Parts

Stress Analysis technique. The failure rate 0_ two Network Element implementations will

be calculated. The Baseline board is consffUcted of a combination of NDI ICs and the

Scoreboard ASIC, as described in Section 4_5_2.2. It is believed that this is the minimum

level of integration needed to allow the AFrA-NE to fit on a single VMEbus-compatible or

SAVA-compatible module. The High-End board consists of four ASICs, the DPRAM,

and the fiber optic components, as described in Section 4.5.2.4, and represents an aggres-

sive packaging approach which would allowthe NE to readily fit on a JIAWG or smaller

module. (It is likely that the NE can fit on a-JIAWG module with a lower level of integra-

tion.)

9.2.3.3.2. Assumptions

The assumptions used in calculating th_ NE failure rate are as follows. First, the

"Baseline NE," that is, the NE containing t_ Scoreboard ASIC, is calculated first. The

Itigh-End board is evaluated as a perturbation to the Baseline. Failure rates are calculated

using the MIL-HDBK-217E Parts Stress Analysis technique. The NE is assumed to con-

sist of Class B parts, consisting of hermetic, ceramic, eutectically bonded integrated circuits

mounted to the board using plated througfi]_isies (PTH). The NE board is assumed to

comply with the MIL-STD-344 form factor, and to consist of 6 signal layers. Maximum

integrated circuit power dissipation specifications are used when estimating junction tem-

peratures. We note that the maximum pow_ dissipation is a worst-case assumption and

can differ from typical power dissipation figures by factor of two. The learning factor YIL

and the voltage stress derating factor-lq V are assumed tO be if0.-

The NE failure rate comprises four main Contributors: the integrated circuits, the fiber

optic components or "plant", the onboard pins connecting the integrated circuits and back-

plane connector to the printed circuit board, and the backplane pins connecting the NE to

the FCR backplane bus.

The integrated circuit failure rates are calculated according to Section 5.1.2.1 of MIL-

HDBK-217E, as
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where

no(c,n v+ n, fail  / 0
(9.33)

Xp is the device failure rate in failures per 106 hours

rIQ is the quality factor (1.0 for MIL-M-38510 Class B components)

FIT is the temperature acceleration factor, based on technology, given by

°(xf'l I1)273 + tTc+ Ojcp } 298

A = 4635 for "I'TL parts, 6373 for CMOS parts

TC is the case temperature (A function of the operational environment See

Table 5.1.2.7-4 in MIL-HDBK-217E.)

OjC is the junction-to-case thermal resistance (A function of the die attach

method and the number of pins. See Table 5.1.2.7-4 in MIL-HDBK-

217E.)

P is the integrated circuit power dissipation

HV is the voltage stress derating factor (Assumed to be 1.0)

II E is the application environment factor

CI is the circuit complexity factor based on gate count and technology (See

p. 5.1.2.1-1 of MIL-HDBK-217E.)

C2 is the package complexity failure rate (See Table 5.1.2.7-16 of MIL-

HDBK-217E.)

(9.34)

The fiber optic connector ands.splitter failure rates are calculated according to Section

5.1.20 of MIL-HDBK-217E. The optical emitter and detector failure rates are calculated

from [APS90].
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Thefailurerateof the onboard pins connecting the integrated circuits to the printed cir-

cuit board is calculated according to Section 5.1.13 of MIL-HDBK-217E. Note that plated

through holes (PTH) are assumed to be used,

Xp= XbrlQFiE[nlnc+ n ilc+ 13)1 failures per 106 hours

where .............

2Lp= failure rate due to onboard pins

2Lb = base failure rate (0.000041 per !06 hours for wave-soldered boards,

according to MIL-HDBK- 217E Table 5.1.13-1 )

FIQ = quality factor (assumed to be 1.0)

FIE = environmental factor (MIL-HDBK-217E Table 5.1.13-4)

nl = number of wave soldered PTHs (obtained by summing the pin counts

of the integrated circuits on the _ plus the number of PTHs required to

connect the backplane connector to the circuit board: 192 for VME, 256 for

SAVA, and 250 for JIAWG LRMs)

n2 = number of hand soldered PTHs (assumed to be 0)

lqc = complexity factor (2.0 for a 6-layer NE board)

Finally, the contribution to the NE's failure rate due to the mating connector pair be-

tween the NE and the FCR backplane bus is calculated according to Section 5.1.12.2 of

MIL-HDBK-217E as follows.

_'p= _b I-IEFIp I-IK failures per 106 hours

where

_.b = base failure rate, given by

_.b= 0.216 exp
-2073.6

T + 273
IT + 273]466 / failures per hours+ ,°°
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T = operating connector temperature, C

FIE = environmental factor (MIL-HDB K-217E Table 5.1.12.2-4)

lip = pin factor, given by

rip=

N - number of active pins (192 for VMEbus, 256 for SAVA, 250 for JI-

AWG)

II K = cycling factor (cycle defined as unmating/mating of the connector,

from MIL-HDBK-217E Table 5.1.12.2-7)

9.2.3.3.3. AFTA Hiatus NE Failure Rate

Using the calculations described above the failure rate of the baseline NE under hiatus

conditions is summarized below. The first table shows the NE tentative parts list and fail-

ure rate for each part. This is a preliminary parts list which will probably change as the

Detailed Design phase of the AFTA program proceeds; the AFTA analysis program will

track these design refinements.
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3
4

5

6
7

8

9

10

11

12

13
14

lS

,1 S
17
18

19

2O
21

22
23
24

25

_2 (i
27

28

29
30

31

32
33

34

36

36

37

38
39
4O

A

CHIPS
Scoreboard ASIC

IDT 7202

Slanetics VME _gntroll_r
Altera EPM 5064 JC-1

i

Altera EPM 5128 JC-1

Lattice GAL 18V10-15LP .........
Lattice GAL 26V12-'15LP

IDT 2K
,it r rr," "l

x 8 SRAM IDT 6116 LA 20 TD

IDT 4K x 8 DPRA M IDT 7134 L 35 J
IDT 64 X _ FIFO IDT 72402 L 25 P
Lattice 22v10

Altera 5032

TI Octal I_us Transceiver

TI Octal Trans wlReg SN74ALS_tANT
IDT 16k x 8 DPRAM IDT 7006 S_G

IDT 2910 Microsequencer IDT 3:9_IOC
IDT 4k x 16 RAM w SPC IDT 715Q2 S 25 J

Dallas Semiconductor watchdog t_mer DS1232

AMD Taxi Transmitter AM7968-125 JC

•
AT&T Optical Transmitter

iml, ,i iiii

AT&T Optical Receiver --
i i ii I ........... =,_ m. i

PROMs :':"_"......

iCvDress Reaistered PROMs CYTC_45A-25WC

Olclllatora .....

Vectron 50 MHz osciliator CO-238A-O

Other Parts ...........

;Fiber Optic Connector ..........

Optic Fiber

,
=

Failures /10^6
1.21E+00

1.02E,+00
2.33E-01
8.92E-01

3.64E+00

3.07E-01
4.14E-01

1.11E-01

2.05E-01

2.63E-02
3.84E-01

1.12E+00

:_,79E-02
6.99E-02

1.21E+00

1.01E-01

1.85E+00
8,72E-03
7.18E-02
2.39E-01

1.63E+00

5.08E+00

1.99E+01

Failure Rate 110^6

7. 1E-o2
7.31E-02

Failure Rate / 10^6
8.31E-02

8.31E-02

Failure Rate / 10^6

5.ooi:"-Ol
_.0o_-ol
5.00E-01

Table 9-7. AFTA Baseline NE Parts Hiatus Failure Rates

The next table shows the total NE failqre_Tate and how it is broken down according to

the integrated circuits ("silicon" in the table), the fiber optic plant, the onboard pins, and the

backplane pins. This information is depicted graphically in Figure 9-7.
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43 'Fail'u_ Rites I Per 10^6 'houri ,,,
44
4 5 Silicon 2.00E+01

ii

4 6 FO Plant 1.50E+O0
4 7 Onboard Pins 1.90E+01
4 8 Backplane Pins 2.54E-01
4 9 Total 4.08E+01
SO
S 1 NE MTBF (houre) .., 2.45E+04

Table 9-8. AFTA Baseline NE Hiatus Failure Rate and Constituents

[] Silicon

[] FO Plant

[] Onboard Pins

Backplane Pins

Figure 9-7. AFTA Hiatus NE Failure Rate Constituents

The calculations indicate that the Baseline AFTA network has a hiatus failure rate of 41

failures per 106 hours, corresponding to an MTBF of 24,500h. From this calculation we

also concIude that approximately 50% of the hiatus NE failure rate is due to onboard IC-to-

board connections, and approximately 50% of hiatus NE failure rate is due to the integrated

circuitry. Thus increasing the level of integration of the NE could at most increase its hia-

tus MTBF by a factor of two.

9.2.3.3.4. AFTA Aircraft Mission NE Failure Rate

The failure rate for the AFTA Baseline NE under Aircraft, Rotary Winged environmen-

tal conditions is presented below. For conciseness the parts list is omitted.
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Table

4 3 Failure Rates r per 10^6 hours
44
4 5 Silicon ..... 3.66F+01
4 6 FOPlant _-- 1.50E+00

i

4 70nboard Pins ...... 1.45E+02

4 8 Backplane Pins .......... 1.42E+00
4 9 Total 1.85E+02

SO

5 1 NE MTBF (hours) 5.42E+03

9-9. AFTA Baseline NE Flight Mission Failure Rate and Constituents

[] Silicon

[] FO Plant

BB Onboard Pins

[] Backplane Pins

Figure 9-8. AFTA Flight Mission NE Failure Rate Constituents

In the helicopter environment, the Baseline NE failure rate has increased significantly to

185 failures per 106 hours, corresponding to an MTBF of 5,400h. It is of interest to note

that approximately 80% of the flight mission NE failure rate is now due to the onboard IC-

to-board connections, and only 20% of thefailure rate is due to the integrated circuitry.

This result is most likely due to the severe _ibration characteristic of the helicopter envi-

ronment. The obvious implication is that increasing the level of NE integration via the use

of ASICs could have a significant impact off the NE's reliability under a helicopter flight

environment.



9.2.3.3.5. AFTA Ground Mission NE Failure Rate

The failure rate of the AFTA Baseline NE under Ground, Mobile conditions is pre-

sented below.

4
4
4
4
4
4
4

5
5

A B

3 Failure Rates_ per 10^6 hours
4
5 Silicon 2.43E+01
6 FOPlant 1.50E+00
70nboard Pins 6.62E+01

8 Backplane Pins 6.1 9E-01
9 Total 9.26E+01

0

1 NE MTBF (hours) 1.08E+04

Table 9-10. AFTA Baseline NE Ground Mission Failure Rate and Constituents

[] Silicon

[] FO Plant

[] Onboard Pins

[] Backplane Pins

Figure 9-9. AFTA Ground Mission NE Failure Rate Constituents

The AFTA Baseline Ground Mission NE failure rate is estimated to be 93 failures per

106 hours, corresponding to an MTBF of 10,800h. Of this failure rate, approximately

72% is due to onboard pins, with 26% due to the integrated circuitry. Again, a significant

benefit can be obtained through from reducing the number of onboard pins through increas-

ing the level of integration of the silicon.
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9.2.3.3.6. Implications and Indicated Course of Action

The AFTA Baseline failure rate calculati_s are summarized below.

Environment MTBF, h

Ground, Fixed 24,500

Aircraft, Rotary w!nged

Ground, Mobile

Table 9-11.

5,400

10,800

% due to ICs % due to onboard pins

50 50

20

26

Summary of AFTA Baseline NE MTBF Data

80

72

These results imply that a higher level of circuitry integration could reduce the hiatus

NE failure rate by up to 50% and the mission NE failure rate by at most 80%, assuming

that an increased level of integration does not _uce the reliability of the silicon.

This motivates repetition of the calculation using a partitioning of the NE into VH-

SIC/VLSI ASICs corresponding to the p_itioning described as the "High End Network

Element" in Section 4. In this partitioning; the NE is comprised of four ASICs and 16K x

32 bits of DPRAM. The four ASICs correspond to the Scoreboard, the Global Controller,

the Voter/FTC, and the VME Controller. _e gate count, pin count, and power dissipation

estimates are presented in the table below. For a detailed breakdown of the constituents of

these devices, refer to Section 4.5.2.5. AIS_ note that the largest devices, notably the

Global Controller and Dual-Ported RAM (DPRAM), are mostly RAM and ROM.

Device # Gates # Pins

Scoreboard 130K I45

Global Controller 658K 80 0.675

Voter/FTC 55K 193 1.370
h, •

VME Controller 156K 131 1.026

DPRAM 1M 272 2.5

Total 2M 821 7.8

Power Consumption, W

2.172

Table 9-12. Gates, Pins, and Power Consumption of High-End NE

MIL-HDBK-217E formulations do not extend to gate counts of highly integrated (e.g.,

30,000+ gate) ASICs, so other analytical means will be required to obtain plausible failure

rates. Specifically, the devices will be broken up into logic gate count, RAM bit count,
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and package complexity, the failure rate for each segment of the ASIC will be computed

separately, and the three will be combined. Failure rate due to logic gates will use the for-

mulation

Xp. logic = I-IQ(C 1,1ogkl"I_rlv) IIL failures/106 hours

failure rate due to RAM will use the formulation

_'p,RAM : FIQ(C 1,RAMYI11-Iv) I'll. failures/106 hours

and failure rate due to package complexity will use the formulation

p,package = FI QC 21-IEl-I L failures/10 6 hours

where, HQ, HT, I-Iv, HE, I'lL, and the failure rate formulations due to onboard pins,

fiber optic components, and backplane connectors are unchanged from previous calcula-

tions. Because of the large number of pins on each package, OjC is estimated as 25C/W

according to MIL-HDBK-217E.

Scoreboard

50K logic gates

40Kbits RAM

Cl,logic = 0.24 (extrapolated from MIL-HDBK-217E)

CI,RAM = 0.20

package C2 = 0.076

The device failure rate is, in failures per 106 hours

GF

3.4

AR GM

6.9 4.4

where, as usual, GF refers to the Ground, Fixed hiatus environment, AR refers to an

Aircraft, Rotary Wing mission environment, and GM refers to a Ground, Mobile environ-

ment. Note that this Scoreboard ASIC has a higher failure rate than that in the Baseline

NE. This is because the Baseline Scoreboard ASIC does not have RAM integrated on it as

does the High End Scoreboard ASIC.

Global Controller
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2.5K logicgates Cl,logic -'-0.04

328Kbits RAM C1,RAM = 0.60 (extrapolated from MIL-HDBK-217E)

package C2 = 0.032 __

The device failure rate is, in failures per I_ hours

GF AR GM
II, ........

0.8 1.9 1.1

Voter/FTC

30K logicgates CI Jogic= 0.16

12Kbits RAM CI,RAM = 0.10

package C2 = 0.076

The device failure rate is, in failures per 106 hours

GF AR GM

0.9 2.2 1.3

.EI_...C_nlmll_

24K logic gates Ci,logic = 0,16

66Kbits RAM CI ,RAM = 0.401 .....

package C2 = 0.053

The device failure rate is, in failures per 106 hours

GF

1.1

DPRAM

512Kbits RAM

AR GM

2.5 1.4

Cl ,RAM = 0.80
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package C2= 0.10

The device failure rate is, in failures per 10 6 hours

[GF AR GM

8.5 16.4 10.7
r

The total NE Device failure rates are, in failures per 106 hours,

GF AR GM

14.7 29.9 18.9
ii

The single largest contributor of High End ASIC failure rate is the DPRAM (58%,

55%, and 57% for the three mission environments). The total number of onboard pins in

the High-End NE is 1021 (821 connecting the ASICs to the board and approximately 200

connecting the backplane connector to the board), compared to 1682 for the Baseline NE.

The NE's power dissipation is also reduced from 40W to 13.4W.

The net result of the integration of the NE circuitry into VHSIC/VLSI ASICs is as fol-

lows.

The hiatus failure rate for the High-End board is

Component

Silicon

FO Plant

Onboard Pins

Backplane Pins

Total Failure Rate

MTBF

Failure Rate, per 106 hours

14.7

1.5

10.5

0.25

27

37,106h

The Aircraft Mission failure rate for the High-End board is
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Component

Silicon

FO Plant

Onboard Pins

Backplane Pins

Total Failure Rate

MTBF ....

Failure Rate, per 106 hours

29.9

1.5

80

1.42

113

8,863h

The Ground Vehicle Mission failure rate for the High-End board is

Component

Silicon

FO Plant

Onboard Pins

Backplane Pins

Total Failure Rate

MTBF

Failure Rate, per 106 hours

18.9

1.5

36.4

0.6

57.4

17,421h

The following table compares the MTBFS of the AFTA Baseline NE MTBF and the

AFTA High End NE, for the three operational environments under consideration. The im-

provement factor is calculated as the ratio of the High End NE MTBF to the Baseline NE

MTBF. .........

Environment Baseline NE

Ground, Fixed 24,500h

Aircraft, Rotary Winged

Ground, Mobile

5,400h

10,800h

Hil_h End NE

37,106h

Improvement Factor

1.51

8,863h 1.64

17,421h 1.61

Table 9-13. Comparison of MTBFs of Baseline and High End AFTA Network Element

9.2.3.4. IOC Failure Rate Calculations .....

As for all NDI AFTA modules, IOC failure rates must be provided by the manufacturer

of the modules or calculated from detailed design information as outlined above. Cur-

rently, no IOCs have been definitively selected for inclusion in AFTA and therefore no fail-

ure rate data are available. As the Detailed _sign phase proceeds and the AFTA I/O suite
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isdefinitizod,thesedam willbe obtainedand incorporatedintotheAFTA analyticalmodel

suite.

9.2.3.5. l_' Failure Rate Calculations

Power conditioner failure rates for militarized VMEbus- and SAVA-compatible mod-

ules were not obtained under the Conceptual Study phase of the AFTA program. How-

ever, [MA-HDBK] contains a list of JIAWG-like power conditioners and failure rate data.

We make the approximation that a PC packaged in VMEbus or SAVA form factor will have

a similar failure rate, and use the following PC failure rate data.

PC Type
L i li|ll i|.l

Varo Power Systems

Model 24039
i

General Dynamics

Model PS32

MTBF Environment
i,

20,000h

15,850h

Airborne, Uninhabited,

Fi[_hter, 71C

Airborne, Uninhabited,

Fighter*

9.0

Table 9-14. PC Cited Failure Rate Data

For the AFTA Conceptual Study analysis we assume the existence of a generic PC

having an MTBF of 17,500h under the Airborne, Uninhabited, Fighter environment. As

usual, a module's failure rate is assumed to be the reciprocal of its MTBF.

9.2.3.5.1. Hiatus

The hiatus MBTF of the generic AFrA PC is estimated as

MTBFpc,hiatus= 17,500 "2_-.'50}=63,000h

9.2.3.5.2. Aircraft Mission

The aircraft mission MBTF of the generic AFTA PC is estimated as

9.0
MTBFpc,aircraft = 17,500(_-)= 18,529h

* Environment uncited: assumed to reside in F-16.
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9.2.3.5.3. Ground Mission

The ground mission MBTF of the generic AFTA PC is estimated as

MTBFpc,ground = 17,500 {4-_}9"0= 37,500h

9.3. Physical Characteristics (WPV) Models

The weight, power, and volume (WPV) models are simple linear summations of the

WPV of the LRMs and LRUs comprising a _ven AFTA configuration.

The weight of AFTA is given by

WTAFTA = ZiWTFcRi (9.35)

where WTFCRi, the weight of FCR i, is given by

WTFCRi = NpEiWTpE + NNEiWTNE + NIociWTIoc + VdTRACK + NpciWTpc

9.3.2. Pow.c.t

The power consumption of AFTA is given by

PWRAFTA = EiPWRFCRi

(9.36)

(9.37)

where PWRFcRi, the power consumptibn--of FCR i, is given by

.....

PWRFcRi = NpEiPWRpE + NNEiPWRNE + NIOCiPWRIoC + PWRBT+ PWRpc

(9.38)

PWRpc = ( 1-el'C)* (NpEiPWRpE + NNEiPWRNE + NIOciPWRIoC) (9.39)

and

epc = Power Conditioner Efficiency

Since we are assuming that no power-down standby redundancy is being used in the

AFTA, the peak power and the average power _ identical.
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9.3.3. Vohmac

The volume (or size) of AFTA is given by

VOLAFFA = XiVOLFcRi (9.40)

where VOLFcRi, the volume of FCR i, is given by

VOLFcRi = NPEiVOLpE + NNEiVOLNE + NIociVOLIoC + VOLRACK + NpciVOLpc

(9.41)

In a modular system such as Ab'TA it is usually most convenient to specify the volume

of a module in terms of the number of"slots" it occupies, accompanied by the volume of a

slot.

9.4. Fleet Life-Cycle Cost per Service Unit (FLCCPSU) Model

It is desirable at the Conceptual Study stage to conduct a preliminary quantification of

the effect of varying AFTA parameters such as VG redundancy level, sparing, redundancy

management policy, implementation technology, etc. on operational and logistics costs.

Military missions are complex and a full cost model must reflect this complexity; however,

at the Conceptual Study phase little information is available about mission details, while in

turn a full mission life cycle cost analysis is beyond the scope of a Conceptual Study.

Consequently, a simple Fleet Life-Cycle Cost per Service Unit (FLCCPSU) model will be

used to illustrate the effects of varying AFTA parameters on overall cost. The FLCCPSU

model computes the cost of vehicle and AFTA procurement, the cost due to repairing

and/or replacing spare components, and the cost due to mission-critical failures.

FLCCPSU = Initial procurement cost +

Cost due to repair actions +

Cost due to replacement parts +

Cost due to unreliability (9.42)

The constituents of these costs are described below.
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9.4.1. Assumptions and Analysis Inputs

The FLCCPSU model presented below is primarily relevant to an iterative aircraft mis-

sion, in which a fleet of vehicles must periodically sortie, perform a mission, and return to

base. This scenario is described in Section 2, an d a figure from that secdon illustrating the

mission scenario is reproduced below.

Ill

flight-critical

hiatus _---[ vehicle lost ]

maintenance

complete

MDC

L met _[ sortie i failure

post-flight

not _ 1 maintenance
met

Figure 9-10. Helicopter TF/I'A/NOE Mission Scenario State Diagram

Failure on the part of AFTA to form _Ccan prevent a vehicle to sortie; if it is as-

sumed that a given number of vehicles must sortie, then additional vehicles must be pro-

cured to achieve this given level of readinessLThis is the cost due to unavailability, and is

included in the formulation for initial procurement cost. Failure on the part of AFTA to

perform flight.critical functions during the mission results in loss of the vehicle; procure-............

ment of lost vehicles (not to mention crews) contributes to the cost of maintaining the given

readiness level. This is the cost due to un_liability. Faults occurring either between or

during missions require maintenance actions, The manpower involved in performing the

maintenance actions and the cost involved in refurbishing or reprocuring failed AFTA

modules contributes to the life cycle cost. of the fleet.

The following list enumerates the input l_ha_[ers to the FLCCPSU model.

Fleet Service Life, Ts: It is assumed that the fleet is in continuous operation

over the Fleet Service Life.

Hiatus duration = Th: The vehicle is in a stand down mode, i.e., powered

off and unoccupied, during the hiatus period of Th hours.

Sortie duration = Tin: The sortie lasts for Tm hours.
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Numberof vehicles required per sortie = Nvs: Nvs vehicles must sortie for

each mission.

Baseline vehicle cost = Cvehb: A vehicle (without AFTA) costs Cvehb dol-

lags.

Cost of an AFTA LRM = Cmodule: An AFTA module costs Cmodule dollars.

Currently, it is assumed that all AFTA modules cost the same.

Number of LRMs in AFTA = NLRM

Cost of an AFTA rack = Crack: An empty AFTA LRU costs Crack dollars.

Number of racks in AFTA = Nrack

Cost to repair a faulty LRM found after hiatus = Crepair,hiatus: The man-

power cost to repair a faulty LRM found after hiatus is Crepair,hiatus dollars.

Cost to repair a faulty LRM found after sortie = Crepair,sortie: The manpower

cost to repair a faulty LRM found after hiatus is Crepair,sortie dollars.

Field repair time = tin: The time required to perform field maintenance and

repair of a faulty AFTA component is tm hours.

Field diagnosis time = tdiag, field, nf: The time required to perform field diag-

nosis of a AFTA component found to be not faulty is tdiag, field, nf hours.

Field repair man hour cost = Cmh: The cost per man hour to perform field

diagnosis, maintenance, and repair of a faulty AFTA component is Cmh

dollars.

Depot diagnosis time = tdiag,depot: The time required to perform depot-level

diagnosis of a faulty AFTA component is tdiag,depot hours.

Depot diagnosis man hour cost = Cdiag,depot: The cost per man hour to per-

form depot-level diagnosis of a faulty AFTA component is Cdiag,depot dol-

lars.

Depot repair time = trepair,depot: The time required to perform depot-level re-

pair of a faulty AFTA component is trepair,depot hours.
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Depotrepairmanhourcost = Crepair,depot: The cost per man hour to perform

depot-level repair of a faulty AFTA component is Crepair,delx_tdollars.

Depot condemnation ratio for an AFT_A LRM = rcondemn: The conditional

probability that the depot can not refurbish a returned module is rcondemn.

Cost of refurbishing an AFTA LRM = Crefurbish: The cost of the parts nec-

essary to repair an AFTA LRM is Crcfurbish dollars. Currently, it is as-

sumed that all AFTA modules cost the _me to refurbish.

9,4.2. Application Scenario

It is assumed that the hiatus phase begins with no faults in AFTA. After Th hours, all

vehicles in the fleet attempt to sortie. Vehicles able to sortie because they can form MDC

perform a sortie of Tm hours, while vehicles failing to form MDC do not sortie. Vehicles

suffering faults either during the hiatus or sortie are repaired before the hiatus period begins

again. This cycle is repeated for the entire se_ice life of the fleet (or until the maintenance

and flight crews mutiny).

Nfs, the total number of sorties required per fleet over the fleet's service life, is equal to

Nvs, the number of vehicles per sortie, times Ts/(Th + Tm), the number of sorties per vehi-

cle over the fleet's service life.

Nfs = Nvs(Ts/(Th + Tm)) (9.43)

9,4,3, Procurement Cost

The total number of vehicles procured is the number of vehicles required to meet the

sortie requirement, Nvs, divided by the availability of AFTA. The availability of AFTA is

given by pPR(Th), the probability that MDC c_ be formed under the processor replacement

class of redundancy management strategies described in Section 5:

Nvp = NvdPeR(Th) (9.44)

The baseline cost of the vehicle is Cvehb, and the cost of AFTA is CAFTA, where

CAFTA = NLRMCmodule + NrackCrack (9.45)

The total cost of the vehicle is
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Cveh = CAFTA + Cvchb (9.46)

The total cost of vehicles procured to meet the sortie requirement is

Cvp = NvpCveh (9.47)

9.4.4. Man_t_wer Cost due to Repairs

The expected number of faulty AFTA LRMs in a single vehicle after a single hiatus, as-

suming that all LRMs have approximately the same failure rate and racks do not fail, is

N_

fh = E J(l'rm_(Th))Jrmh(Th )(Nu_rj) rmb (t)=e'_'*'t

j=l (9.48)

The expected number of faulty AFTA LRMs in a single vehicle after a single sortie is

NLI_t

fm= E J(1-rm_(T m))Jrrn_ (T m) (N u_-j), rm (t)=e-_.,,.t
j=l (9.49)

The expected cost of field repairs (not counting parts) for a single vehicle for a single

hiatus/sortie interval

Crepair, field,ss = fhCrepair,hiatus + fsCrepair,sortie (9.50)

where "ss" stands for "single sortie." We make the reasonable assumption that Cre-

pair,hiatus = Crepair,sortie. To perform field repair, maintenance crew time must be spent

testing, identifying, and replacing the faulty module according to the procedure described in

Section 6. Denote this maintenance and repair time by tin. With a field maintenance crew

manpower cost per hour of Cmh, the field maintenance manpower cost per vehicle per sor-

tie is

life

Crepair,fieid,ss = (fh + fm)tmCmh (9.51)

The expected manpower cost of field repairs for the entire fleet over its entire service

Crepair,field,fleet = NfsCrepair,field,ss (9.52)
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After a defective module has been remov_ from the vehicle by field maintenance per-

sonnel, to maintain a given level of readiness the spare module used for replacement must

itself be replaced. To achieve this objective _0 options exist. The defective module may

be condemned and discarded, in which case aspare module must be procured. Alterna-

tively, the defective module may be shipped back to a depot for repair. We assume that

modules are condemned and discarded eitherat the field or the depot with probability rcon-

demn and successfully repaired with probability 1-rcondemn. If the module is condemned in

the field, the manpower cost in doing so is negligible; other than the inevitable paperwork

the field crew is assumed to throw the defective module in the trash. If the module is

shipped back to the depot, shipping costs are in_curred, and the depot maintenance techni-

cian must perform additional testing to dete_ine whether the module is repairable using

depot level tests. If we neglect shipping costs, we can without numerical error assume that

the field crew always ships the module back io the depot for further diagnosis. We assume

that the depot diagnostics require tdiag,depot hours at a cost of Cdiag,depot per diagnostic

hour. If the module is condemned as a resu!t.O_f_these tests, negligible additional cost is in-

curred other than paperwork time. If the• m_ule is repaired, additional manpower and

parts costs are incurred. After diagnosis, repair requires trepair,depot time, at a cost of Cre-

pair,depot per hour. In addition, spare parts (such as integrated circuits) are required to re-

place those found to be faulty on the module. _is cost will be accounted for in the subse-

quent Section. Putting this all together, the total manpower cost per vehicle per sortie for

depot repair of a faulty module is

Crepair,depot.ss = (fh + fm)(tdiag,depotCdiag,depot + (1-rcondemn)trepair,depotCrepair,depot)

(9.53)

The expected manpower cost of depot repairs for the entire fleet over its entire service

life is

9.4.5. Cost due to Sp_¢,._

Crepair,depot, fleet = NfsCrepair,depot,ss (9.54)

The expected number of LRMs which m_st be replaced for the entire fleet over its ser-

vice life is equal to the expected number of faulty modules per sortie, times the number of

fleet sorties. Denoting this quantity by Nspa_ifleet,

Nspares,fleet = Nfs(fh+ fro) (9.55)
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The cost of spare parts requirexl to maintain the AFTA fleet over its service life is the

number of module faults incurred during the fleet service life times the cost of replacing a

module or repairing it at the depot.

Cspares,fleet = Nspare_fleet(rconde_nnCmodulc + (1-rcondemn)Crdurbish) (9.5 6)

9.4.6. Cost due to Unreliabili _tyof AFTA

Assuming that the crew escapes the effects of loss of vehicle-critical computing func-

tions, the cost due to unreliability of the AFTA is the total number of fleet sorties over the

service life times the probability that the AFTA causes the loss of a vehicle during a single

sortie times the cost of the vehicle.

Cur = Nfs(1-PGD(Tm))Cveh (9.57)

where PGD is the probability that the flight-critical computing functions can be per-

formed by AFTA when its redundant components are managed according to the graceful

degradation class of redundancy management policies.

9.4,7, Total FLCCPSU

The Fleet Life Cycle Cost per Service Unit is

FLCCPSU = Cvp + Crepair,field,fleet + Crepair,depot,fleet + Cspares,fleet + Cur (9.58)
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10. VHSIC Hardware Description Language

The VHSIC Hardware Description Language (VHDL) is rapidly becoming a standard

tool for digital logic design. Using VHDL, an engineer can write initial design specifica-

tions, device behavioral characteristics, device structural characteristics, and device timing

characteristics using a single, integrated design environment. This section details the use-

fulness of VHDL for the AFTA brassboard development project, including the areas of

logic design and synthesis, simulation, testing, and documentation for reprocurement.

10.1. VHDL Overview

VHDL (VHSIC Hardware Description Language) is a hardware design language devel-

oped under the VHSIC (Very High-Speed Integrated Circuit) project. The language can be

used for a number of applications, including design, debugging, simulation, testing, per-

formance analysis, and documentation. The_o&f of VHDL is required by the Department of

Defense for all new ASIC designs built to m_!itary specifications. The specification of the

VHDL language is standardized in [IEEE10761.

Traditional idealized design procedures prescribe a top-down design methodology. The

goal is to define a design at an abstract level, then traceably refine each major component

into increasing levels of complexity until a description of the design suitable for fabrication

is produced. In practice, this ideal is rarely observed. Instead, the designer may pursue a

bottom-up, middle-out, or a combination of the three approaches. VHDL supports the de-

signer in any of these approaches.

Designs described by VHDL can be sim_ulated before the design is constructed. The

simulation environment is a defined part of the language. VHDL is not a static language,

which just defines interconnections between elements. Processes, which can contain logic,

state, and timing relations can also be defined. The simulator uses these constructs to "run"

the design. A VHDL simulator can provide a viewport into a VHDL model, possibly

through a source-level debugger.

The VHDL resulting from the design process can be used as a form of self-documenta-

tion. The highly abstract description (called tlae behavioral model) defines the functions of

the design. The low-level description (called the structural model) defines the interconnect

between individual hardware pieces.
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10.1.1. Behavioral vs. Structural Models

VHDL supports the varying of abstraction by the designer during the design process.

The mechanism for varying the design abstraction is done by using two types of models:

behavioral and structural. A particular VHDL description can not be truly classified as ei-

ther behavioral or structural. Part of the power of VHDL is the ability to mix structural and

behavioral models. In fact, all VHDL descriptions include some behavioral modeling.

A VHDL description can be represented as a tree structure as shown in Figure 10-1. A

structural VHDL model contains interconnected instantiations of other VHDL models. This

is analogous to describing a circuit as a netlist, with device pins (ports in VHDL) connected

to wires (signals in VHDL). A behavioral VHDL model describes the operation of a par-

ticular device in terms of state, output and timing relations as a function of device inputs.

The lowest level, or leaf-level, models in any VHDL description are always behavioral

models.

Microprocessor I

(struct.) J

pipeline register ALU register file

I D flip-flop(behav.) I

Figure 10-1. Hierarchical VHDL Model

An example of a behavioral model for a D flip-flop is shown in Figure 10-2. The be-

havioral model of the flip-flop defines the state of the outputs Q and !Q as a function of the

clock and D inputs. The behavioral model can also include the timing relations between the

clock and the outputs (clock to Q propagation delay) and the timing relations between the D

input and the outputs (setup and hold times). A properly developed behavioral model

would check for violations of setup time, hold time, pulse width minimums, etc., with any

violations reported to the user. The development of accurate behavioral models with these

characteristics is a very tedious, labor-intensive, time-consuming, and expensive task.
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-Olim t=t.H(clk to O or/Q) = 16 ns

H X _' t=HL(clk to Q or IQ) = 18 ns

m L X _ tw (clk high) = 14.5 ns
tw (clk low) = 14.5 ns

T H L tsu (D to clk) ,, 15 ns
!' L H tH(dktoD)=0ns

Figure 10o2. Behavioral.Model of a D Flip-Flop*

The flip-flop can also be represented as a structural model defining instantiations of

logic gates and interconnections between th_gic gates as shown in Figure 10-3. In this

case, the logic gates would be represented by behavioral models defining the device func-

tion (truth-table) and timing (propagation delay) as shown in Figure 10-4.

m
m

Clock

D

Q

Figure 10-3. StructuralModel of a D Flip-Flop$

m

m

A BIY

L_L H

L H H

H L H

H H L

IPLH(A or B to Y) - 11 ns
tPHL(A or B to Y) = 8 ns

Figure 10-4. Behavio_i_Model of a NAND Gate

The behavioral description of the flip-flop is sufficient in most instances to define the

function of the circuit. The structural mode!is too low level for most applications. The

* From Texas Instruments ALS/AS Logic Data Book 1986.

¢ From Texas Instruments "ITL Logic Standard TTL, Schottky, Low-Power Schottky
Data Book 1988.
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functionof the flip-flop is readily apparent from the behavioral description, but not from

the structural description. The flip-flop behavioral model could be instantiated in higher

level structural models. The flip-flop structural model, however, would probably only be

used by an engineer to design the flip-flop itself.

10.1.2. Overview of a VHDL Description

A VHDL model is composed of a number of different elements, including packages,

entities, architectures, and configurations. Each element is contained in a library. An ele-

ment can access other elements by specifying the library name containing the referenced el-

ement and the element name. One library, known as "WORK", is used to store models un-

der development. Other libraries may be used by explicitly declaring their usage within a

model.

A package contains certain constants, type declarations, global signals, functions, and

procedures that are used throughout a model. Examples of packages include TEXTIO, and

STANDARD; these packages are defined as part of the VHDL standard environment

[IEEE1076]. Packages are convenient for hiding definitions from the designer and for al-

lowing incremental changes. A package declaration can be kept separate from the package

body. The package declaration (referred to in VHDL simply as the package) contains decla-

rations for the contents of the package body. The package body actually contains the defi-

nitions. Changes to, and recompilation of the package body does not require recompilation

of models which use the package.

An entity describes the interface to the model. The entity is analogous to a symbol, such

as the flip-flop symbol shown in Figure 10-2. Ports for input and output signals are de-

fined in the entity. The entity also allows the definition of generics, which provide a

method of passing parameters into the model. Different instantiations of a model can have

different signals attached to the ports and different values assigned to the generics.

The architecture defines the model, either in behavioral or structural terms. A behavior

model, such as that shown in Figure 10-2, can be represented as a set of one or more con-

current processes. A structural model can be represented as a schematic, such as that

shown in Figure 10-3 for the D flip-flop. A structural architecture defines instantiations of

other entities, which can themselves be either structural, behavioral, or a combination of the

two. Note that a model can have more than one architecture defining the model. One archi-

tecture is selected to represent the model in a particular situation.
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The selection of architectures is done using a configuration. The configuration tells the

VHDL compiler/analyzer which architecture to "plug into" each entity instantiation. Gener-

ics can also be defined in the configuration section. The configuration can define the entire

VHDL description hierarchically, or it can call other configurations to define lower level

structural models.

10.2. Use of VHDL for AFTA

VHDL will be used extensively in the AFTA Network Element (NE) design. A VHDL

analysis tool will be used to design, analyze, simulate, and document the Network

Element. VHDL descriptions of the Network Element subsections can also be used as a

basis for performing validation of the NetworkElement design. VHDL will also be used as

the medium for converting appropriate subsections into application-specific integrated cir-

cuits (ASICs).

VHDL analysis and simulation is rapidly becoming a standard tool for performing chip,

board, and system design. The flexibility of VHDL permits almost any digital circuit to be

described and simulated using standard VHDL analysis tools. This capability permits de-

bugging of circuit designs before building them. If accurate models are used in the analy-

sis, the resulting simulations will be highly faithful to the actual observed behavior of the

final design.

Subsections of the AFTA NE design which may require a significant amount of design

and testing include the scoreboard and the fault-tolerant clock. Other sections which will

benefit from the use of VHDL are the data path voter, the global controller, and the ring

buffer manager.

The VHDL description of the scoreboard is particularly important since the scoreboard

is a prime candidate for implementation in an ASIC device. Since an ASIC represents a

significant investment and is not easily changed, the scoreboard design must be robust. The

VHDL analysis tool will permit a significant amount of testing to verify the correct func-

tionality of the scoreboard design. The scoreboard register-transfer level (RTL) VHDL de-

scription can be converted, with the use of a synthesis tool, directly to an ASIC design.

The test bench created to test the scoreboarddescription can also be used to generate func-

tional test vectors for testing the scoreboard ASIC during foundry testing.
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10.2.1. Design

One of the primary uses of VHDL for the AFTA Network Element is for conceptual

and detailed design of custom hardware. VHDL is a useful tool for performing detailed de-

sign, supplementing conventional tools such as schematic capture and Boolean equation

synthesis tools. Conceptual design at a very high level can also be done in VHDL, some-

thing for which no comparable tool exists. The transformation from high level to detailed

design can be performed completely within the VHDL environment.

We shall use the following definitions within the scope of the AFTA NE development.

Definition 1:

Behavioral VHDL is defined to be a VHDL architecture which uses any of

the legal VHDL constructs, including those which do not correspond to

possible hardware realizations of the description (i.e., pure behavioral may

not be synthesizeable).

l)r,faailiml 
Structural VHDL is defined to be a VHDL architecture that consists strictly

of instantiations of other entities and the interconnect between these entities.

I ,flaik0a 

Reeister Transfer Level (RTL) VHDL is defined to be synthesizeable behav-

ioral VHDL, that is, a behavioral VHDL description that is suitable for input

to a synthesis tool.

l O.2.L I . Behavioral

The architecture of submodules in the Network Element will be developed using VHDL

behavioral modeling. Alternate partitioning of the designs can be done using behavioral

models. Simulations using alternate partitioning can be used to determine what partitioning

provides optimal performance.

The behavioral models will be decomposed into register-transfer level (RTL) descrip-

tions. Some models will be developed only in RTL form. The RTL form is also a behav-

ioral format which specifies the functionality of a block from the standpoint of random

combinational logic and/or synchronous registers. Synthesis of a gate-level design from an

RTL description is a straightforward process using (expensive) logic synthesis tools.
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10.2.1.2. Structural

The structural description of Network Element submodules specifies the design of the

submodule as an interconnecdon of lower level components. The gate-level netlists syn-

thesized from RTL behavioral descriptions rep_sent structural descriptions.

Structural VHDL requires accurate mode!sdefining the behavior of the individual com-

ponents. For example, an ASIC design would require high fidelity models defining each

gate, register, and macrocell used by the design. A design utilizing standard devices also

requires models defining the behavior of _S, PROMs, and other MSI/LSI parts. The

development of structural descriptions of the_FTA Network Element is contingent upon

the availability of these models. Structural _fiptions of subsections for which suitable

models are not available would not be a useful exercise, since the description would not

represent any characteristics not already des_bed more concisely by the behavioral de-

scription.

10.2.2. Simulation

One of the most useful features of VHDL is the built-in simulation capabilities. VHDL,

unlike many other hardware description langiiTges and schematic capture programs, defines

an integrated time reference. Device models Can easily specify timing characteristics such as

propagation delays and can check for tirr_ng violations such as setup and hold times.

Timing specifications rely on the existende-bT-faithful device models, therefore accurate

timing simulations of Network Element sulS_iions using structural VHDL is contingent

on the availability of device models. ............

A test bench in VHDL is a model of a testiifixture that can be used to test the device be-

ing designed with VHDL. The test bench is _ written in VHDL, so all the capabilities of

VHDL are available for sophisticated error d_/ecking. The test bench provides a non-pro-

prietary way of stimulating and monitoring a design in a simulator. While some simulators

provide for direct stimulus of a design without Using a test bench, this capability is simula-

tor dependent and is therefore not guaranteed to be present in all _L simulators. Even if

the capability is included, the implementations-may define different methods for specifying

stimulus.

The test bench will be used for simulating major sections of the Network Element. Test

benches will be developed to test the scoreboard, the fault-tolerant clock, the data path
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voter, the global controller, and the ring buffer manager. A test bench will also be designed

to test the aggregate of these subsystems in a complete Network Element design.

10.2.3. Testin_

The VHDL models for the AFTA design will include test benches with which the mod-

els can be tested. A properly designed test bench can be used for either behavioral or

structural VHDL models. In addition, the test bench can be used as a source of functional

test vectors. The stimulus driven by the test bench and the expected response can be inter-

cepted and saved in a data file. The data file can be used by the manufacturer of a submod-

ule to test the submodule following assembly.

The test vectors derived from the test bench are functional test vectors which are in-

tended to test that the device performs the desired function as defined in the original specifi-

cation. An additional set of test vectors can be generated to test that a particular implemen-

tation of a device is free of faults. These test vectors are typically developed by automatic

test pattern generator (ATIK_) tools and test a device against the gate-level design descrip-

tion, not against the original design specification. Each set of test vectors should be used to

fully test a device following fabrication.

10.2.4. Documentation

Another function of VHDL is to document the AFTA design. Documentation is re-

quired to enable reprocurement or reimplementation of the AFTA design.

10.2.4.1. Custom Devices

One of the most important applications of VHDL for documentation is for reprocure-

ment of custom devices used in the AFTA design. To maintain vendor independence for

custom parts, a non-proprietary method is needed to unambiguously define the complete

design of custom devices.

Many different options are available for reprocurement of custom devices. These op-

tions are illustrated in Figure 10-5. The path chosen depends on the needs of the repro-

curement. If replacement parts for an existing system are needed, one of the paths with the

least amount of effort should be sufficient. If new parts with architectural enhancements are

needed, more effort will have to be expended to redesign many of the lower levels. The

grayed areas indicate levels of the design to which VHDL can be applied.

Page 10-8



Y Y Y Y

Odglnal Mask Compatible Scalable _w Technology- New Technology-
Implementation Process Process ......: gate-compalJble higherIntegration

l i iiiii!!ii!iiiiiiiiiil
Y

I
,Y

I
¥

I ]
New Technology-

new gates required

Figure 10-5. Reprocurement _tions for Custom Devices

The mask compatible process assumes that a standard, vendor independent process

specification is used to fabricate an integrated circuit. Such a process would allow multiple

vendors to reuse masks produced during the original fabrication process.

A scalable process is a derivative of an existing process in which the feature size, and

thus the overall chip size, is reduced. If the design rules for the technology are scaled lin-

early with the feature size, a new chip can be fabricated from the original chip layout. New

masks will have to be made, but the effort to produce masks from the original chip layout is

a straightforward process. ....

Both of the above options are straightforward reprocurement cycles. Little, if any, re-

design is necessary. For these options, VHDL has no application. However, for repro-

curement cycles with more redesign effort, VHDL can be very useful.

The next level of reprocurement is the use of a new technology with a compatible set of

gates. For example, most CMOS, NMOS, GaAs, and "I33_, technologies use negative logic

in the form of NAND and NOR gates. A gate-level netlist in VHDL that specifies instantia-

tions of these gates could be used to port a design to any of these technologies. The VHDL

behavioral model specifies the timing requirements for the design. The designer must make

sure that the new gate-level netlist in the new technology meets the requirements specified

by the original VHDL behavioral model.

Some alternate technologies use different types of gates. An example is ECL technol-

ogy, which is based on OR/NOR gates. If a device that was originally designed for CMOS

technology is to be reimplemented in ECL, a new gate-level netlist must be synthesized

from the original register-transfer level (RTL) description to make effective use of the
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OR/NOR gatesin ECL technology. The RTL description, which could be written in

VHDL, specifies blocks at a functional level, either as combinational logic or registers. The

synthesis tool that creates the gate-level netlist from the RTL description uses a library that

specifies what gates are available in the selected technology. Thus, the RTL description is

the first truly technology and vendor independent specification level.

A final reprocurernent option is to reimplement a device at a higher level of integration.

Increasing the integration level of a technology allows the designer to either produce

smaller chips or to design chips that use more concurrent hardware for higher throughput.

Architectural enhancements are a common method of improving the performance of a de-

vice without increasing the clock speed. However, to make these architectural enhance-

ments, the designer must use the original high level specification for the device. The un-

partitioned behavioral VHDL model is such a specification. The designer can use the

behavioral model to determine what architectural changes can be made to optimize

performance. Once the design is repartitioned with the architectural modifications, the rest

of the design cycle must be completed before the chip can be fabricated in silicon.

The options presented above describe several different anticipated options for repro-

curement of custom devices for the AFTA Network Element. Reprocurement can never be

effortless, but the amount of effort can be made commensurate with the amount of change

required.

10.2,4,2. Standard Devices

The use of VHDL is not limited to custom devices. VHDL can be used to specify a

complete chip, board, or system level design in a hierarchical manner. VHDL is sufficiently

versatile that a high level model of a system can be decomposed into board level and chip

level components. Chip level components corresponding to custom devices can be decom-

posed further into gate level descriptions. Standard devices are described at the leaf-level by

behavioral models defining the functionality and timing requirements of the devices.

Reprocurement of standard devices must be ensured as is the reprocurement of custom

devices. Typically, devices to be reprocured are required to conform to standard parts

specifications defined in MIL-M-38510. Each of these devices is defined by a "slash sheet"

in a standard, non-proprietary format. Each device is furthermore required to be available

from more than one vendor. Each vendor must ensure that parts to be sold as compliant

with the "slash sheet" meet the specification.
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The reprocurement options for systems Containing standard devices are described in

Figure 10-6. The options are much more limited than for custom devices. The reason for

this is that either one can obtain an exact _lacement for a part, or the design must be

modified to accept a new part. The extent oft_e redesign is, of course, dependent on the

relative similarity between the old part and the new part. However, redesign, even if simply

a revalidation of the timing characteristics, will always be required if different parts are to

be used.

I I I I I I
Original 385i 0 New Device

Implementation Equivalents Technology

Figure 10-6. Reprocurement Options for Standard Devices

The structural models represent the interc0nnection of individual standard devices. The

structural model will not represent anything more than the netlist unless accurate behavioral

models for the standard devices are used. If accurate models are not available, the netlist

representation in VHDL has no advantage over more conventional netlist representations,

such as schematic drawings.

The advantages to using VHDL for reprocurement of standard devices is very marginal.

Certainly, the behavioral VHDL allows for repartitioning of the design if new devices are to

be used. However, the structural VHDL doe___s_notenhance the simple reprocurement of

equivalent devices.

The current approach to VHDL modeling for the AFTA design does not consider the

leaf-level behavioral models for standard devices. The reason for this is the unavailability

of these leaf-level models. Modeling devices at the behavioral level involves complex pro-

gramming in VHDL and often requires significant knowledge of the inner workings of the

device. In addition, these models have no use for the development of custom devices.

Since the AFTA Network Element is targeted for multiple custom devices during full-scale

development, the development of complex structural descriptions of standard devices

seems to be fruitless.
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10.2.5. Candidate VHDL Tools for AFTA NE Desima

Draper has VHDL design tools and computing platforms in house to perform the above

design functions. The available tools include products by Vantage, Viewlogic, and

Synopsys. The Vantage and Viewlogic tools will be used for NE design capture and simu-

lation. The Synopsys tool will be used to synthesize gate level netlists from the RTL

VHDL description.

10.2.6. Compliance with Data Item Description

The data item description (DID) entitled "VHSIC Hardware Description Language

(VHDL) Documentation," number DI-EGDS-80811 [DID80811], has some relevance to

the development of VHDL models for the AFTA design. While the scope of the DID is

more appropriate for a full-scale development project, certain sections of the DID will be

addressed by the AFTA brassboard design to minimize the impact of future full-scale de-

velopment of the AFTA design. Proposed compliance with, and deviations from, the DID

are detailed in the following sections.

10.2.6.1. Rtference Documents

The VHDL language and environment is defined by the IEEE Standard VHDL

Language Reference Manual [IEEE1076]. The use of VHDL for the AFTA design will con-

form to [IEEE1076] in all aspects.

1_0,2.6.2. VHDL Model Hierarchy

A VHDL model of the Network Element design and of the subsections of the Network

Element design will be provided. The Network Element is the only section that will be de-

scribed using a structural model, unless detailed leaf-level models are provided by external

means for either custom (ASIC) or standard logic devices. The subsections of the Network

Element that will be described by VHDL behavioral models include the scoreboard, the

fault-tolerant clock, the data path voter, the global controller, and the ring buffer manager.

10.2.6.3. Leaf-Level Modules

The leaf-level modules for the AFTA Network Element depends greatly on the targeted

technology and the availability of accurate device models from an outside vendor.

Development of these models is an expensive, time-consuming process and is outside the

scope of the AFTA brassboard development project.
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TheGovernmentmaysupplymodelsfor usein the AFTA design. These models will be

incorporated as leaf-level modules wherever appropriate.

Major subsections for which a complete Sfiite of models is not available will be supplied

as a either a behavioral model or an incompletdy specified structural model.

A list of commercial grade parts used in tl_e AFTA brassboard design will be provided

along with the Network Element VHDL desc_ption. This list can be used to obtain appro-

priate device models at a later date.

10.2_6A. Enti__ Declarations

The entity declarations for Network Element subsections will describe, as best as pos-

sible, the timing constraints of the subsection-Since the actual timing constraints depend on

the behavior of the selected devices, the accuracy of these constraints is highly dependent

on the availability of accurate leaf-level _els.

The entity declarations for the Network Element subsections will conform to the inter-

face declaration requirement as specified in thtDID wherever possible.

The timing and electrical requirementsTor the Network Element design will not be

guaranteed by the behavioral models of the NE, Any timing and/or electrical specifications

included in the behavioral models will be derived from data book information. The struc-

tural models for the NE, if written, will incliJ-de timing and electrical requirements if the

models that make up the leaf-levels of the S_uctural models handle these requirements

properly.

The operating conditions for the Network Element design will not be handled by the

behavioral models of the NE. The structural models for the NE, if written, will include op-

erating conditions if the models that make up the leaf-levels of the structural models handle

these requirements properly.

The high-level structural Network Element description will provide for the addition of

timing, electrical, and operating condition requirements if appropriate leaf-level models be-

come available.

The naming conventions for entities in the Network Element design will conform to the

requirements as specified in the DID wherever possible.
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10.2.6.5. Behavioral Body_

Behavioral models for each major Network Element subsection will be developed as

part of the AFTA detailed design process. The behavioral models will conform to the re-

quirements as outlined in the DID wherever possible. Timing characteristics of the behav-

ioral models may be based on preliminary analysis and may not reflect the exact timing

characteristics of the brassboard design unless accurate leaf-level models are used to ana-

lyze the structural design.

Behavioral bodies will not be structurally decomposed unless functional partitions dic-

tate that such decomposition is appropriate.

The timing characteristics of the behavioral body will specify, as accurately as possible,

the known timing behavior of Network Element sections. Best, worst, and nominal output

delays will be included, if known. However, many models (particularly those from com-

mercial-grade data books) will only define worst case timing.

10.2_6,6. Structural Body_

Structural models for major Network Element subsections will be developed as part of

the AFTA detailed design process if appropriate leaf-level modules are available to define

the structural model. The structural models will conform to the requirements as outlined in

the DID wherever possible. The use of the structural models for logic fault modeling and

test vector generation depends on the accuracy of the models instantiated in the structural

models.

The naming conventions for components and signals in the Network Element structural

design will conform to the requirements as specified in the DID wherever possible.

10.2.6,7, VHDL Simulation Support

The Network Element design will incorporate test benches for simulating the Network

Element as a whole and for simulating major subsections of the Network Element alone.

VHDL test benches will be written to be independent of a particular simulator product.

Each test bench will instantiate the appropriate module, either behavioral or structural,

apply stimuli to the module's inputs, and test the module's outputs against an expected re-

suit. Any discrepancies in actual and expected output will be reported to the simulator op-
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erator.Each test bench will incorporate a configuration to allow selection of the architecture

for the model und_ test.

A test bench will be developed to test the entire Network Element as a stand-alone

module. In addition, test benches will be developed to test the major subsections of the

Network Element, including the scoreboard, the fault-tolerant clock, the data path voter, the

global controller, and the ring buffer manager as stand-alone modules. Test benches for

lower level entities will not be provided.

10.2.6.8. ErrorMessages ......

The format of error messages in the Network Element design will conform to the re-

quirements as specified in the DID. _

10.2.6.9. Annotations

Annotations included in the Network Element design will conform to the requirements

as specified in the DID.

1___.2.6.10. Rff_erence to Origin

The models used in the Network Element design will specify the origin of the model as

specified by the DID wherever appropriate.

The Government may supply models for use in the AFTA design. These models may

be purchased by the Government for use in modeling the AFTA design, or provided from

internal Government sources. The origin of these models will be specified, if known.

10.2.6.11. VHDL Documentation Format

The format of VHDL documentation for the Network Element design will conform to

the requirements as specified in the DID wherever appropriate.

A facility for producing an ASCII tape under the specified requirements is currently in

place. The organization of files on the tape will conform to the organization described in the

DID. Not all files specified in the DID will necessarily apply to the AFTA brassboard

VHDL models.
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11. AFTA Validation and Verification

AFTA will be used to provide mission- and vehicle-critical services in a range of Army

applications. Some means must be def'med to provide a reasonable degree of assurance that

a given AFTA implementation will in fact perform the required mission functions: these

means include the validation and verificationprocesses.

Validation refers to the process of demonstrating that an implemented system correctly

performs its intended functions, e.g., helicopter TF/TA/NOE/FCS, under all reasonably

anticipated operational scenarios, fault conditions, computational loads, etc. Thus, what is

ultimately wanted is a "validated system," a_:mt which one can state "This computer can

perform helicopter TF/TA/NOE/FCS." To aRempt to capture the relevant characteristics of

a system which is believed to be capable of _rforming a mission's intended functions, a

system specification is written with which t[ie_implemented system must comply, with the

hope that a system meeting the specification will also perform the mission's intended func-

tionst. Given a well-written specification, one can typically come close to building a sys-

tem that meets it. However, human fallibility and the ambiguities of language - both in-

formal and otherwise - conspire to ensure that no specification can completely describe the

needs of a mission. In recognition of this, lengthy and expensive validation testing is typi-

cally performed on an implemented system, ifi Which it is demonstrated that the system can

in fact perform a specified set of the mission's intended functions over a specified envelope

of operational conditions. The system is then Called validated.

Given a specification, say of delivered throughput, the verification process demon-

strates that an implemented system mee_iS the specification. For the helicopter

TF/'I'A/NOE_CS example, it is perhaps desif_ to make the statement "This computer de-

livers XVG.delivered DAIS MIPS to the application program." The belief that a delivered

throughput of XVG,delivered DAIS MIPS is sufficient to perform helicopter

TF/TA/NOE/FCS is a critical link between successful performance of the mission's in-

tended function and compliance with the system specification. Verification is relatively

more straightforward than proving that an implemented system performs the mission's in-

tended functions, because, whereas a mission environment incorporates the innumerable

t In actuality a hierarchy of specifications _d requirements is written. For the purpose of

the present discussion it is assumed that a single specification document suffices to describe
the system.
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vagaries, uncertainties, and complexities of real life, a specification is ultimately a list of re-

quirements that can be enumerated and checked off during the verification process. The

computer's delivered DAIS MIPS throughput can be benchrnarked. In rare cases, a system

specification is sufficiently exhaustive and accurate such that a system which meets the

system's formal specification document is capable of performing the system's intended

function; this assertion itself must of course be proved. In these cases, it is only necessary

to verify that the system as implemented meets the system's formal specifications; valida-

tion is proved by the presumed logical transitivity between the specifications and the mis-

sion's intended function. Even in this idealized example, it is safe to say that the empirical

phase of validation will never be eliminated; nobody would want to fly in an aircraft which

had never been flight tested but which, we are assured, can be formally proven to meet its

specifications.

Their limitations notwithstanding, specifications are written which serve as a mutually

understood representation of the mission designer's understanding of what characteristics

the computer system must have to perform the mission's intended functions, and the com-

puter designer's understanding of what requirements the computer system must meet.

Three categories of statements can be made about a system. The first category contains

statements (either regarding the mission's intended function or a specification item) whose

validity can only be affirmed or negated via empirical test and evaluation for each and every

differing implementation. The MTBF of an AFTA LRM is one example of such a state-

ment: as the LRM changes due to technology insertion, or as the operational environment

changes, the LRM's predicted MTBF must be verified via a reliability evaluation plan.

While often unavoidable, use of such statements should be minimized since they comprise

a large contribution to the cost of validating and verifying a system, and do not appropri-

ately leverage experience gained from the implementation of prior systems. The latter two

categories are indicative of a system which is described by the seeming oxymoron

"validated independent of the application."

The second category contains logical statements (either regarding the mission's in-

tended function or a specification item) which can be formally stated and shown to be an

intrinsic property of the system when designed according to simple, unambiguous rules

and guidelines. For example, one such statement refers to AFTA's Byzantine Resilience.

Such statements have value because their relationship to these rules and guidelines has only

to be shown once; subsequent implementations have only to be inspected to ensure that

they comply with the rules and guidelines, and hence the statement about the system holds.
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The third category contains quantitativesiatements (either regarding the mission's in-

tended function or a specification item) describing certain important characteristics of a

system that are valid, to an extent independent of the application in which that system is

used. These characteristics are not usually fixed numerical quantifications of system at-

tributes such as performance, reliability, component MTBF, etc., because these attributes

change from implementation to implementatioh, as technology insertions occur, etc. In-

stead, implementation-invariant formulatiofis are much more valuable in facilitating the

cost-effective, safe, and predictable reuse of-A-FTA for various applications. One example

might be the AFTA temporal overhead due tb-fault tolerance, surely an important determi-

nant of delivered throughput. While it is tempting to state that fault tolerance consumes

some fixed and attractively low temporal overhead based on prior experience, it is in fact

the case that the fault tolerance-related overhead is a function of how often the application

program invokes fault tolerance-related functions such as voting, synchronization, interac-

tive consistency, etc. Thus it is critical to knQw the relationship between the application's

invocation of these functions and the loss of throughput to allow the intelligent and in-

formed design and partitioning of application_fasks in AFTA and the accurate prediction of

the actual delivered throughput in an imple_ntation.

In reality, general statements about AFTA are supported by statements from all three

categories described above. For example, a_statement about AFTA reliability includes

statements about LRM MTBFs (only availaNe via empirical test and evaluation for each

LRM type during Reliability Development an--d Growth Testing), Byzantine Resilience (a

logical attribute of AFTA which can be shown Via adherence to simple architectural rules),

and fault latency (which is partly a function of_e frequency at which the FDIR/C-BIT task

is executed on a VG). ....

In summary, validation is the process oFdemonstrating, with a high degree of confi-

dence, that a system correctly performs its intended mission functions, for example, heli-

copter flight control. Verification is the p_s of demonstrating that a system meets its

specifications, for example, 10 MIPS throughput. A verified system becomes a validated

system when a correspondence has been shown between the specifications and the intended

mission functions, for example that 10 MIPS is sufficient throughput to perform helicopter

flight control. Application dependent specifications, such as throughput, cause validation

process to be repeated for each new applicati.on. However, there are certain logical state-

ments that can be made about AFTA attributes that hold true independent of applications,

such as Byzantine Resilience. In that sens_:once these attributes of AFTA have been
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demonstrated,one can say that AFTA is partially validated independent of the intended

application requirements.

1 1.1. Verifiable AFTA Attributes

The following list shows AFTA attributes which will be verified during the Dem/Val

phase. This set of attributes can be expanded upon guidance from the Army.

Functional Correctness and Byzantine Resilience

Fault Containment

NE Synchronization
Interactive Consistency
Voting
Message-Release Authorization (Scoreboard)
Functional Synchronization
Byzantine Resilient Virtual Circuit Abstraction
Reconfigurability
Rate Group Scheduling
Intertask Communication Services
I/O Services

Redundancy Management (FDIR) Software

Performance-related Attributes

Delivered throughput
Available memory per VG
Effective intertask communication bandwidth

Effective Input/Output bandwidth
Task iteration rate

Reliability-related Attributes

AFTA reliability and availability

Cost-related Attribute_t

Cost per Unit of Service

Physical Attributes

Weight
Power

,Volume

Table 11-1. Verifiable AFTA Attributes

If this list seems somewhat short it should be borne in mind that each attribute listed

above must be plausibly verified within a reasonable cost and time; therefore it makes sense
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to keep the size of the list to the minimum needed to specify the core AFTA attributes

needed to perform the mission's intended function.

The AFTA Conceptual Study focuses on ilpredictive" verification, in which AFTA is

verified using a combination of predictive and corroborative verification means. First, the

AFTA's verifiable attributes are enumerated; these correspond to the requirements defini-

tion format defined in Section 2 of this report. In the predictive phase of the verification,

these AFTA attributes are predicted via performance, reliability, availability models, and

cost models as described in Section 9. The pr_ictive phase runs through the Conceptual

Study and Detailed Design phases of the AFTA program. In the corroborative phase, exe-

cuted during the Brassboard Fabrication, Integration, and Validation phase of the AFTA

program, critical model inputs are verified vi_nempirical test and evaluation, or sensitivity

studies are performed to obtain bounds on the effects of unverifiable parameters. In addi-

tion, quantities predicted by the models which can be empirically verified are measured to

corroborate the models' accuracy. _-

In empirical verification it is necess_ that either (a) sufficiently large sample sizes

must be obtain to produce statistically sound results to support the modeling assertions or

(b) the architecture must be designed to minimize reliance on assertions which rely on sta-

tistical parameters which can not be obtained with a reasonable amount of effort. The

AFTA design is intended to be strongly biased towards the latter approach.

1 1.2. Verification of Byzantine Resilience and Operational Correctness

Numerous functions must be performed correctly for AFTA to meet its advertised per-

formance and reliability requirements. These functions may be expressed as a set of logical

statements about the arrangement and operation of the architecture which are independent of

any application in which AFTA is used. Thus, if correctly implemented, these statements

may be viewed as being valid regardless of any application.

The first set of specifications describes ajchitectural features which are required for

AFTA to be a Byzantine resilient message:p_-ssing parallel processor; these features are

largely implemented in the Network Element. The second set of specifications describes

the functionality required for the AFTA OS tO successfully perform scheduling, message

passing, I/O, and redundancy management.
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11.2.1. Fault Containment

AFTA must be partitioned into at least four Fault Containment Regions (FCRs), each of

which contains at least one NE. The FCRs must possess independefit sources of power,

independent clocks, be dielectrically isolated from each other, and if damage tolerance is
'%

requ!red, be physically separated from each other. Verification of each of these require-

ments is performed by inspection of the AFTA design and implementation.

11.2.2. NE Synchronization

The AFTA Network Elements must be synchronized to each other to within a known

skew. The NEs achieve synchronization via the use of a set of circuitry known as the Fault

Tolerant Clock (FTC), which executes a Byzantine resilient phase locking algorithm. The

synchronization algorithm itself must first be specified and shown to be Byzantine resilient.

This has been done via journal-style mathematical proof in [Kri85].

The circuitry must then be shown to correctly implement the algorithm. It is preferable

that this be done via the process of formal specification and verification. In fact, because

the NE is a critical component of AFTA it is highly recommended that its entire

functionality be subjected to a well-supported program of formal specification and

verification. This is feasible with the current state of formal verification technology but is

inappropriate within the limited AFTA Brassboard Dem/Val schedule and budget.

Therefore the approach taken in the Brassboard Dem/Val phase is to design the FTC and

other NE hardware according to standard engineering practice, including detailed

specification, design, implementation, and test reviews, with the intent that eventually

formal methods will be applied to this circuitry. Under the Brassboard Dem/Val phase, the

NE synchronization skew will be measured in the absence of faults and in the presence of

Byzantine faults.

11.2.3. Interactive Consistency

Distribution of data from one member to all members of a redundant VG must be per-

formed using a Byzantine resilient interactive consistency algorithm. The algorithm used in

AFTA has been formally specified and demonstrated to be Byzantine resilient in [LSP82].

The circuitry must be shown to correctly implement the algorithm. The preferred approach

to verification of the correctness of the AFTA interactive consistency function is via the

process of formal specification and verification. Again, because of schedule and budget

constraints, a more traditional hardware engineering process will have to do during
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Dem/Val. Theinteractiveconsistencycircuitry will beempiricallyshownto correctlyim-

plernentthealgorithmfor all possibledatasourcesandall possibledatadestinations,in the
!!!!:

presence of one Byzantine fault.

11.2.4. Voting

Messages emanating from redundant VGs are passed through a majority vote function

implemented in the NEs. The NEs must _ capable of voting messages arriving from

triplex and quadruplex VGs. The voter is maskable, and generates vote syndromes for de-

livery to the destination VG. Voting is easily expressed mathematically and demonstration

of its Byzantine resilience is relatively straightforward. The NE's voting circuitry must be

shown to correctly implement the algorithm, and the above comments regarding formal

specification and verification hold. The app_ach taken in the Dern/Val phase is to design

the voter according to standard engineering practice. The voter will be empirically shown

to correctly vote input messages. In the presence of faulty input messages, the voter will

be shown to correctly generate a syndrome corresponding to the faulty input. The voter

will be shown to have the capability to mask_out an input such that it can not contribute to

the voted outcome. The response of the voter to out-of-specification inputs, such as "two-

two splits," will be demonstrated .......

11.2.5. Message-Release Authorization (Scoreboard_

The NE Scoreboard has responsibility for deciding which inter-VG messages may be

transmitted. This calculation is a complicated function of the message request pattern, the

flow control request pattern, the redundancy configuration of AFTA, the sender's and re-

ceiver's redundancy levels, and elapsed time. The baseline approach to specification and

verification of the Brassboard Scoreboardjs, again, standard engineering practice. The

Scoreboard will be shown to generate Corre-ctmessage release decisions from a large set of

input message request patterns, where the patterns will in many cases be those resulting

from faulty source and destination PEs ........... =-=

However, because of its complexity and criticality, the Scoreboard has been targeted

for more advanced specification, design, and verification approaches. If these approaches

are cost-effective they may be used for other parts of the NE. The Scoreboard algorithm

has been expressed in the C programming language and by a VHDL description. These C

and VHDL descriptions have been stimulated with representative message request patterns

to help in identifying errors in the specification. The patterns serve as a verification suite
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for successively detailed representations of the Scoreboard. VHDL will be used in con-

junction with ASIC synthesis tools to automatically transform the high-level behavioral de-

scription of the Scoreboard to an implementation. Verification of the fidelity of the

Scoreboard implementation to the behavioral specification will be performed by applying

the message pattern verification suite to the representation of the detailed implementation.

This is facilitated by the ability of automated VHDL synthesis tools to provide mechanical

traceability between the hierarchical representations of the design, all the way from the

high-level behavioral description to the transistor level.

To investigate the feasibility of formal specification and verification of AFTA hardware,

the VHDL and textual description of the Scoreboard is being transformed into a formal

specification under a collaborative effort with Odyssey Research Associates. It is expected

that the expression of the Scoreboard algorithm in a rigorous formalism will assist substan-

tially in revealing incompleteness, ambiguity, and inconsistency in the specification. It will

also serve as a concrete case study for estimation of the time and effort in constructing for-

mal specifications and design verifications of other parts of the NE.

11.2.6. Reconfigurability

The mapping of PEs to VGs in AFTA may change upon command from a VG having

an appropriate redundancy level. It is in fact this capability to reconfigure processing re-

sources in real time which gives AFTA its power to provide high reliability and availability

across a wide variety of missions and mission modes. The mapping of PEs to VGs is ef-

fected through a Configuration Table (CT) resident in the NEs. The CT is used by the

Scoreboard to interpret message request patterns and determine the sources and destinations

of messages. The CT in the NE is changed upon reception of a command known as a "CT

Update" emanating from an appropriate VG. It must be verified that, given a CT, a given

message request pattern results in selection of the appropriate message source and destina-

tion. This is subsumed in the above discussion on verification of the Scoreboard correct-

ness. Next, it must be verified that a given CT Update in fact causes the Scoreboard to cor-

rectly reconfigure the mapping from physical (PE) to virtual (VG) resources according to

the CT Update's contents. This rests on verification of two statements. First, it must be

verified that the CT Update emanating from the VG is correctly voted and delivered to the

NEs. This is subsumed in the verification of the correctness of the NE's voting function.

Second, it must be verified that the scoreboard receives the voted CT Update and correctly

updates its CT. Verification of this attribute is also subsumed in the Scoreboard verifica-

tion effort.

i
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11.2.7. Functional Synchronization

The members of a redundant AFTA VG_e synchronized via the synchronous recep-

tion of copies of ii message, as described in _tion 3. To perform functional synchroniza-

tion, the members of a VG transmit a message to themselves and await its reception. The

synchronized NEs perform identical computations on the message request pattern, vote or

perform interactive consistency on the message , and deliver the message to the destination

VG with a small skew. To verify that functional synchronization in fact synchronizes the

VG members it is necessary to verify that, _ synchronization points determined by the

AFTA OS, the VG members transmit a message and await its reception. This is done via

examination of the OS code which purports to achieve functional synchronization. It is

next necessary to verify that the NEs are synchronized, that they perform identical compu-

tation on the message request pattern (via the Scoreboard), that they can vote or perform

interactive consistency on the message, and that they select the correct sources and destina-

tions for the message. Means for verifying these assertions are enumerated above. Func-

tional synchronization will be demonstrated both in the presence and absence of PE and NE

faults. The time required for synchronization and the post-synchronization skew will be

measured.

11.2.8. Byzantine Resilient Virtual Ci_Uit Abstraction

The BRVC, described in Section 3, is the major inter-VG communication abstraction

provided by the NEs comprising the fault tolerant core of AFTA. All higher-level AFTA

OS functionality relies upon this abstraction for message ordering, correctness, and deliv-

ery skew. The BRVC comprises the following Byzantine resilient guarantees:

Guarantee 1: Messages sent by non-faulty members of a redundant source

VG are correctly delivered to the non-faulty members of re-

cipient VGs.

Verification: This guarantee is verified by demonstrating that the NE ag-

gregate can correctly vote messages (Section 11.2.4) and

route them from their source to destination VG (Section

11.2.6).

Guarantee 2. Non-faulty members of recipient VGs receive messages in

the order sent by the non-faulty members of the source VG.
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Vmification: This guarantee is verified by demonstrating that the NE

Scoreboard releases a message emanating from a source VG

before releasing any others from that same VG (Section

11.2.6).

Guarantee 3. Non-faulty members of recipient VGs receive messages in

identical order.

Verification: This guarantee is verified by demonstrating that all NEs

achieve interactive consistency on the message request pat-

tern (Section 11.2.3), and all Scoreboards correctly execute

the same message release algorithm (Section 11.2.6).

Guarantee 4. The absolute times of arrival of corresponding messages at

the members of recipient VGs differ by a known upper

bound.

Verification: This guarantee is verified by demonstrating that all NEs are

synchronized (Section 11.2.2).

]1.2.9_ Rate Group Scheduling

The next set of logical statements refer to the AFTA OS. Under the Detailed Design

phase of the program, a Software Development Plan (SDP) and Software Requirements

Specification (SRS) will be constructed for the AFTA OS. The SRS will describe the

functionality of each of the major AFTA OS functions as well as qualification, acceptance,

and verification tests for each. The discussion presented below represents a high-level

overview of the most important functions achieved by the OS and the means for their veri-

fication.

At the highest level of abstraction, the Rate Group dispatcher is responsible for starting

tasks belonging to a given Rate Group (RG) at the beginning of that RG. Each minor

frame demarcates a specified set of RGs; tasks in these RGs must have finished one itera-

tion and are prepared to begin their next iteration. The following table illustrating the RG

boundaries is reproduced from Section 9.

Page 11-10



Frame Boundary Completed RGs Started RGs

7-0 4, 3, 2, 1 4,3,2,1

0-1 4 4
i ili

1-2 4, 3 ........:..... 4. 3

2-3 4 4

3-4 4, 3, 2 ...... 4, 3, 2

4-5 4 4
....... iiii ,,

5-6 4,3 4,3

6-7 4 4

Table 11-2. Completed/StartedR_3s vs. Minor Frame Boundary

It must be verified that, on the appropfiaie frame boundary, the RG dispatcher enables

execution of the tasks whose RG frames are about to begin via setting an event correspond-

ing to each RG; RG tasks which have just c0mpleted their frames are awaiting the setting of

this event to resume execution. To verify thatthe appropriate RG tasks are started on the

appropriate RG frame boundaries, it must be shown that the RG dispatcher sets the appro-

priate events upon each minor frame boundary.: In addition, it must be shown that each RG

task awaits the setting of the event corresponding to its RG frame upon completion of each

of its iterations. Formal specification and VehTication of this and other selected AFTA OS

functionality should be performed; while S0_-6what costly and difficult given the current

state of the art, the criticality of the OS funcff66ality to the AFTA's reliable operation merits

this effort. Because of cost constraints in the AFTA Brassboard phase, verification of the

correct implementation of the OS functiona Itntywi!! be done via standard software engineer-

ing practice, which includes detailed specifi_aii0n, documentation, review, and exhaustive

testing of the OS and application interface code. In the testing phase, it will be demon-

strated that the RG dispatcher correctly dispatches a specified number of tasks in each RG,

ranging from zero to the maximum number specified by the dispatcher specification. Tasks

shall be constructed which test the error handling capabilities of the dispatcher. For exam-

ple, such tasks shall generate frame overruns in order to test the dispatcher frame overrun

detection and recovery capability, generate Ada exceptions which have no handler and

hence trap to the dispatcher handler, and attempt other malfeasance.
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11.2.10. Intertask Communication Services

AFTA tasks communicate using the intertask communication services described in Sec-

tion 5. The services consist of four main components. The message enqueueing compo-

nent receives a message from an application task, partitions it into Network Element pack-

ets, and places these packets on the message queue corresponding to the RG hosting the

application task. At each minor frame boundary, the packet transmission component

transmits the queues of packets corresponding to just-completed RGs into the Network

Element for transmission to the destination VG(s). The packet delivery interrupt service

routine fields packet delivery interrupts from the Network Element by copying the delivered

packet to the appropriate incoming packet queue. Finally, the message reception compo-

nent updates frame markers, constructs completed messages from the incoming packet

queue, and makes these messages available to destination tasks. Each of these functions

must be specified and verified in detail. Formal methods are again recommended but be-

cause of their cost will not be utilized during the Brassboard construction. Again, standard

software development practice will be used, which will include a rigorous testing program

in the presence of faults. During the testing phase, it will be demonstrated that the intertask

communication services correctly transmit messages for all message sizes up to the maxi-

mum allowable in the intertask communication specification, for all exchange classes, and

for all source and destination task combinations including broadcasts. Tasks shall be con-

structed which test the error handling capabilities of the communication services. Such

tasks shall attempt to overflow their transmit buffers to test outgoing flow control capabil-

ity, cease reading incoming messages to test the incoming flow control and buffer overrun

containment features of the communication services, attempt to cause flow control at se-

lected destination VGs by sending many large messages to it, send messages to nonexistent

tasks and VGs, send illegal message classes, send illegal message sizes, and exhibit other

erroneous behavior.

11.2.11. I/O System Services

The AFFA I/O System Services (lOSS) are composed of four components. The I/O

dispatcher ensures that I/O requests (IOR) are executed and processed on appropriate

frames. The IOR execution component initiates concurrent and sequential I/O. The IOR

processing component reads input and status data and delivers it to the destination task(s).

The "back end" device drivers to which the IORs interface perform the detailed bit- and

byte-level manipulation of the interface to the IOCs. The correctness of each of these com-

ponents must be verified. It must be shown that the I/O dispatcher invokes execution and
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processing of each IOR in the frames in which it is specified. Each IOR must be shown to

execute and process the correct I/O chains when it is scheduled, and interface to the correct

back end I/O driver routines. These are algorithmic functions which lend themselves to

formal specification and verification. Whil_ _-ebaseline approach to specification and ver-

ification of the AFTA IOSS components follows standard software development practice,

these services are also being targeted for the use of a formal software specification and ver-

ification tool; if the use of this tool proves cost-effective then it may be used on other AFTA

software components. Finally, because of their highly specific and non-algorithmic nature,

the back end I/O driver routines' correctness_will be demonstrated via standard software

development procedures, which will include-extensive testing in the presence of faults.

Tasks shall be constructed which stress the e_r handling capabilities of the IOSS.

11.2.12. Redundancy Management (FD_) Software.

The FDIR software is responsible for te_ng components, detecting and identifying

faulty components, performing fault recove_ctions, and performing reconfigurations as

mission modes change. As can be seen from Section 5, the FDIR function can be ex-

tremely complex and require the collaboration of multiple VGs in a distributed, fault toler-

ant algorithm. Moreover, although much of _IR is active in the absence of faults, the true

utility of FDIR is in the presence of faults, _ it determines how AFTA will respond to

faulty behavior. These complexities require _ use of a set of verification techniques. The

FDIR functions relevant to a single VG may_ specified in detail, possibly using formal

methods, and it can be shown that the FDIR Code as implemented correctly reflects its

specification, either through standard softw_--development means or formal means. This

includes showing that the FDIR task, when scheduled by the RG dispatcher, correctly per-

forms the intra-VG presence tests, and, if a member is faulty, correctly identifies the faulty

member and performs the selected local recovery procedure. AFTA-wide fault detection,

diagnosis, and recovery actions may also be sp_ified and analytically verified, but analyti-

cally showing the correctness of implementation in the presence of faults, especially of the

recovery functions, may be very difficult because the loose synchronization between mul-

tiple VG participants adds temporal complicati÷ons.

In addition to analytical means, FDIR must at least in part be verified by a process of

empirically examining its response to faulty _havior. Faults may be injected in software

(e.g., FIAT, DEPEND) or hardware (e.g., AIi_ FFMP), each of which has its merits and

will be used judiciously. For each fault recove_ policy to be used in an implementation, it

is necessary to fault each LRM while AFTA is in every possible configuration of redundant
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VGsandIOCs, and confu'm that the fault is detected and the designated recovery policy is

carded out. Timing data will also be obtained. Empirical test and evaluation is particularly

important in verifying multi-VG response to faults. The number of fault and configuration

combinations in a testing program such as this is admittedly large but it is felt that the FDIR

function is of sufficient importance that the effort be made. Certain simplifications can be

made to make the testing program tractable, such as injecting errors only at the LRM level,

and limiting the temporal behavior of faults to permanents and transients. Automating the

fault/error injection and data acquisition processes will be necessary.

1 1.3. Verification of Performance Predictions

Verification of performance predictions usually requires empirical measurement of the

quantity of interest. The AFTA PEs' throughput(s) may be initially estimated via empirical

benchmarking using Whetstones, Dhrystones, and other mutually agreed upon empirical

benchmarks; alternatively, the throughput(s) may be analytically evaluated as in a DAIS

mix calculation. Empirical timing measurement of existing AFTA components may be per-

formed with the use of processor emulator pods, logic analyzers, processor-asserted dis-

crete outputs to logic analyzers or oscilloscopes, or on-processor timers. All empirical

evaluations must be done in the presence of worst-case faults such as a failure of a VG's

processor or a Network Element. It should be borne in mind that sample sizes obtainable

from empirical evaluation, while overwhelmingly large, may be insufficient to support sta-

tistically viable assertions that hard real-time constraints will be met with a probability

commensurate with the reliability requirements of flight-critical systems, that is, on the or-

der of 0.999,999,999. Therefore the AFTA's quantitative characteristics are intended to

minimally rely on such assertions.

11,3,1, Delivered Throughput __ VG

The delivered throughput per VG is defined to be the raw PE throughput minus operat-

ing system, redundancy management, and synchronization overheads. The delivered

AFTA throughput is equal to the delivered throughput per VG times the number of VGs in

AFTA. A model relating the raw throughput to the delivered throughput and various over-

heads is presented in Section 9. The following parameters of this model must be verified

either via inspection of the design and application tasks, empirical measurement, or static

calculation of upper-bounds on execution times as in [Pus89].
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Parameter

XVG, raw,the raw VG throughput

THK, thedispatcher housekeeping time

NMESSAGES, i,the number of messages
senti0frame i

TSU, the setup time required to begin

sending a single message

Sk, the size (in Network Element packets)
of outgoing message k in frame i

Tp, the incremental time required to send
one packet

NMESSAGES, i, the number of messages
received in frame i*

TSU, the setup time required to begin re-

ceiving a single message

Sk, the size (in Network Element packets)

of incoming message k in frame i*

Tp, the incremental time required to deliver
one packet*

NTASKS, i, the number of tasks to be
started in frame i

TEV, the time required for the dispatcher to
set an event

TFDI, minor, the time required for one minor
frame execution of the FDI task

TCS, the context switch time per task

Verification Technique

Determined via benchmarking according to
standard benchmarks; depends critically on

computation characteristics

Empirical timing measurement on AFTA or

calculation of execution upper-bound

Empixical inspection of application tasks

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Empirical inspection of application tasks

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Empirical inspection of application tasks

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Empirical inspection of application tasks

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Empirical inspection of application tasks

Empirical timing measurement on AFTA or

calculation of execution upper-bound

Empirical timing measurement on AFTA

calculation of execution upper-bound

or

or

NTASK$, R4, the number of R4 tasks .
Empirical timing measurement on AFFA
calculation of execution upper-bound

Empincal inspection of appli" cation tasks

NTASKS. R3, the number of R.3 tasks

NTASKS. R2, the number of R2 tasks

NTASKS. R1, the number of R1 tasks
inspection of application tasks

Empirical

Empirical inspection of application tasks

Empirical inspection of application tasks

Table 11-3. Verification of Delivered Throughput

* Name reused to avoid nomenclature proliferation.
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11.3.2. Available Memory _tmrVG

The available memory per VG is defined to be the gross memory per VG minus the Ada

Run Time System, dispatcher, and FDI memory requirements. The total AFTA VG mem-

ory is defined to be the available memory per VG times number of VGs in AFTA.

The verification approach for this attribute is straightforward. The gross memory per

VG is determined by inspection of the design of the PEs comprising the VG; this quantity

is probably specified in the PE procurement specification. The Ada RTS, dispatcher, and

FDI memory requirements for a given mission are empirically determined by inspection of

the memory map of the load module of the VG of interest.

11.3.3. Effective Intertask Communication Bandwidth and Latency

The effective intertask communication bandwidth is the size (number of bytes) of an

intertask message divided by the time required for transmission and reception of the mes-

sage. The latency is the time between the transmission of the message by the sending task

and the reception of the message by the recipient task. A model for the latency is presented

in Section 9. The verification parameters needed to allow this model to accurately predict

the effective intertask communication bandwidth and latency are listed in Table 11-4.

11.3.4. Effective I/O_.Bandwidth and Latency

The effective I/O bandwidth is defined to be the size (in number of bytes) of an I/O

transaction divided by the time required for transmission (reception) of the transaction by

the source (destination). The input latency is the time in seconds between the sampling of

an input byte by the input device and the availability of that byte at the input of the destina-

tion function. The output latency is the time in seconds between when a computational

function generates an output byte for delivery to an output device and when the output de-

vice receives the output byte.

Because the I/O devices to be used in AFTA are not yet def'mitized, a detailed list of pa-

rameters to be measured can not be constructed. The general outline presented in Table 11-

5, however, seems appropriate for verification of the performance any type of I/O device

and transaction type.
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Parameter

TENQUEUEMESSAGE, the time required for
a task to enqueue a message for transmis-
sion

Tlatency, RG, the time between the en- .......
queueing of a message by a sending task

and the task's next RG frame boundaryt

TSU,XMIT, the time required for the com-
munication services to prepare a message
for transmittal

TXMIT, the time required for a packet to be
transferred from the PE to the NE

TNE, the time required for the network ele- :

ment ensemble to perform the requested
message transmission

TRECEIVE MESSAGE, the time required for
the communication services to construct in: .....

coming message from packet queue

Table 11-4.

ii i

Verification Technique

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Empirical timing measurement on AFTA

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Empirical timing measurement on AFTA
(straightforward upper-bound measure-

ment)

Empirical timing measurement on AFTA
(straightforward upper-bound measure-
ment)

Empirical timing measurement on AFTA or
calculation of execution upper-bound

Verification of Intertask Communication Bandwidth and Latency

Parameter

Transaction size

For memory-mapped I/O, time between
transaction start and transaction processing

completion

For network output, time between transac-
tion start and reception of data at output
device

For network input, time between transac:
tion start and initiation of processing for
transaction

Time required for I/O task to process trans-
action information

Time required for I/O task to deliver pro-
cessed transaction information to local or

remote destination task(s )

Verification Technique

Examination of application code

Empirical timing measurement on AFTA
(straightforward upper-bound measure-
men0

Empirical timing measurement on AFTA
(straightforward upper-bOund measure-
ment)

Empirical timing measurement on AFTA
(straightforward upper-bound measure-
ment)

Empirical timing measurement on AFTA or

calculation of execution upper-bOund

Subsumed under intertask communication

bandwidth and latency verification

Table 11-5. Verification of I/O Co_unication Bandwidth and Latency

t The programming model is designed to be insensitive to this parameter.
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11.3.5. Iteration Rate of a Task

The iteration rate of a task is defined to be the frequency at which task iterations are ini-

tiated, it being assumed that the execution time of a task iteration is less than the reciprocal

of the iteration rate. The approach to verifying that a task's specified iteration rate will be

serviced by AFTA begins with showing that the task is assigned to a Rate Group (RG) cor-

responding to its desired iteration rate. It must then be verified that the RG dispatcher ini-

tiates the RG at the requisite frequency. Verification of this functionality is subsumed in

Section 11.2.9. All Rate Group tasks will execute at their desired iteration rate if the total

throughput consumed by all RG tasks,

TRG = fR4XR4 + fR3XR3 + fR2XR2 + fR1XR1 (11.1)

is less than XVO, delivered, as calculated in Section 9:

TRG < XVG, delivered (1 1.2)

where

TRG = total throughput consumed by all RG tasks

fRi = frame rate of RG i

XRi = throughput requirement of one iteration of all tasks in RG i

1 1.4. Verification of Reliability and Availability Predictions

The AFFA reliability, R(t), is the probability that AFTA correctly performs its intended

function during the time interval (0,t), given that it was in a well-defined operational state at

time t--0. The AFTA availability, A(t), is the probability that the system is capable of per-

forming its intended function at time t, with temporary outages during the time interval (0,t)

being allowed for repair.

As described in Section 9, several formulations can be used to quantify AFTA reliabil-

ity and availability, depending on the redundancy management and fault recovery options in

use. A general expression for AFrA reliability and availability is related to the probability

that AFrA can perform its intended functions at time t, given a particular redundancy man-

agement option; this probability can correspond to AFTA reliability or AFTA availability,

depending on the mission and/or mission phase that it models. Two representative formu-
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lations for this probability are given in Section 9. PGD(t) represents the probability that

AFTA can perform its intended functions at time t when the components are managed under

a graceful degradation class of fault recove_ policies, in which no service interruption is

incurred, ppR(t) represents the probability that AFTA can perform its intended functions at

time t when the components are managed under a processor replacement class of fault re-

covery policies, in which brief outages may be incurred for fault recovery. Both calcula-

tions assume that all AFTA components are operational at time t=0.

Since the reliability and availability of AFTA in its redundant configurations are far too

high to verify using accelerated life testing, verification of AFrA reliability and availability

must be performed indirectly through a combination of analytical and empirical means.

In the analytical phase, predictive model s are constructed for the figure of merit of in-
....

terest; the models in Section 9 are two such predictive models. The models rely on the

Byzantine resilience of the underlying AFTA _chitecture; verification of this assumption is

described in Sections 11.2.1 through 11.2.8. The models also rely on abstractions of

AFTA behavior in the presence of faults; the detailed behavior of a particular fault recovery

option is specified and verified in Section 1L2.12. The correspondence between the ana-

lytical model's abstraction of the behavior and the actual behavior must be verified by de-

tailed comparison of the (preferably verified) FDIR implementation and the analytical

model. This phase of reliability and availability verification is performed once and for all,

since the validity of the models is independent of the application.

General classes of numerical inputs to the reliability and availability models are listed

below. The numerical inputs may change from implementation to implementation and from

mission to mission, and therefore have to bereverified for each application.

11.4,1, ComponeDl Failure Rate

Component failure rates are a first-order determinant of ultimate AFrA reliability and

availability and must be empirically verified or computed in compliance with acceptable

engineering practice. AFFA LRM/LRU failure rates are computed using the Parts Stress

Analysis techniques as specified in MIL-STD-217E. It is assumed that the use of the MIL-

STD-217E-based approach yields failure rate data which are reasonably accurate. In some

cases failure rate data can be empirically corroborated through Reliability

Growth/Development Testing and field data. In the AFTA analytical models constant fail-
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ure ratesareassumed.This assumptionmust be verified using acceptable engineering

practices.

11.4.2. Fault Reconfiguration Time

Lengthy fault reconfiguration times can result in a significant probability of AFTA fail-

ure due to a second fault occurring while AFTA is recovering from the first. AFTA is de-

signed to mitigate the effects of such near-coincident faults during the mission by using a

rapid fault reconfiguration, i.e., reconfiguration within 10 ms of vote error manifestation.

For anticipated AFTA mission durations, this short reconfiguration time can reduce the

probability of VG failure due to near-coincident faults (the second term in Equation 9.23) to

a level which is relatively small compared to the probability of VG failure due to attrition

(the first term in Equation 9.23). Minimization of near-coincident faults as a dominant VG

failure mode reduces the need for acquiring statistically signifcant measurements of the re-

configuration time, since the architecture's reliability and availability are designed to be in-

sensitive to this quantity.

Table 1 I-6 illustrates a typical relationship between the two failure modes' probabilities

for the helicopter mission. Note that the two contributors to VG failure are commensurate

for quadruplex VGs being used for short mission times, and therefore statistically signifi-

cant verification of reconfiguration time becomes an issue in this case. In general, large

variations in the Ab-'TA mission duration or reconfiguration time may force this quantity

into prominence. The AFTA reliability and availability models compute the probability of

failure due to near-coincident faults and attrition to allow estimation of their relative impor-

tance and the consequent need for intensive verification of reconfiguration time. In these

models constant reconfiguration rates are assumed, which yield a pessimistic estimation of

probability of failure due to near-coincident faults.
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Probability of VG
Failure due to Attrition

VG Redundancy Level

1 Hour Helicopter
Mission

Triplex [ 6.49E-09 7.21 E- 14

Quadruplex [" 7[!4E- ! 3 1.44E- 13

2 Hour Helicopter
Mission

Triplex 2.59E-08 1.44E- 13

Qua&'uplex 4.84E' 12 2.88E- 13

Probability of VG
Failure due to Near-

Coincident Faults

Table 11-6. VG Failure Probability Due to Attrition and Near-Coincident Faults

During the Brassboard Dem/Val phase, fault reconfiguration times will be empirically

measured. It is expected that they will depend strongly on the reconfiguration policy in ef-

fect, the throughput of the PEs, and the bandwidth of the various communication compo-

nents like the NEs and FCR backplane bus.

11.4.3. Fault Regonfiguration Coverage

The AbTA analytical models assume uni£y detection and reconfiguration coverage for

faults occurring in triplex and quadruplex VGs, and quadruplex and quintuplex NEs.

These high coverages are due to the architecture's compliance with the requirements of

Byzantine resilience, and are not generally considered empirically verifiable per se.

Verification of the correctness of the synchronization, voting, and FDIR functions that im-

ply this unity coverage has been discussed above. An additional issue arises of verifying

the coverage of faults occurring in degraded triplex VGs, commonly denoted the "duplex

coverage." Three options exist, each of Which impacts verification. First, the graceful

degradation policy described in Section 5 canl leapfrog the degraded triplex state and pro-

ceed directly to the simplex state. This transition can occur with unity coverage since a

triplex can accurately diagnose its own health in the presence of a single fault and, specifi-

cally, can identify a nonfaulty survivor simplex within its own VG. A second option is to

assume that a degraded triplex VG suffering an additional fault randomly determines which

of its two members is nonfaulty and designates that member as the surviving simplex. This

results in a duplex coverage which is probably about 0.50. Finally, self-tests can be devel-

oped which can increase the duplex coverage to something better than a random guess. For

verification purposes, the first policy is superior since it introduces no additional verifiable

parameters.
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11.4.4. VG Redundancy Levels

Verification of the redundancy levels of the VGs comprising an AFTA configuration is

straightforward.

11.4.5. Mission/Hiatus Tirr_

Verification of the mission and hiatus times for an anticipated AFTA mission is straight-

forward. As an anticipated mission evolves the analyses must be continually repeated to

ensure that the targeted AFTA configuration continues to meet the reliability, availability,

and life cycle cost objectives.

11.5. Verification of Cost Predictions

The Fleet Life Cycle Cost per Service Unit (FLCCPSU) is the life cycle cost of a fleet

of vehicles given a required sortie rate, including the cost of additional vehicles required

due to vehicle unavailability, the cost of repairs and spares, the cost of redundancy, and the

cost of vehicles lost due to vehicle unreliability, over the fleet service life. A simplified

model for the FLCCPSU is given in Section 9. As for the reliability and availability,

FLCCPSU can not be directly measured, but must instead be verified through a combined

program of predictive analysis and empirical means.

A predictive model for FLCCPSU is submitted in Section 9 of this report. Verification

of the adequacy of this model consists of review of the model by appropriate government

representatives, followed by recommendations for improvement and subsequent concur-

rence that it represents FLCCPSU sufficiently well for the purposes of drawing conclu-

sions regarding AFTA redundancy levels, fault recovery policies, and other architectural

and operational parameters. The FLCCPSU model draws upon analytical results from

other AFTA modeling efforts such as performance, reliability, availability, weight, power,

and volume, and hence its validity rests upon theirs. It also requires numerous quantitative

inputs, as listed in Section 9, which must be obtained for each mission scenario of interest.

The FLCCPSU model is intimately tied to the mission scenario, which includes the

maintenance scenario, the dispatch policy, the cost of failing to sortie, the cost of losing a

vehicle, and other mission-specific parameters. Thus, while the general modeling approach

may have utility for many Army missions, the model presented in Section 9 itself can not

be viewed as being a formulation which is valid independent of the application.
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11.6. Verification of Weight, Power, and Volume Predictions

Section 9 of this report contains simple m_els for the total fielded weight, power, and

volume (WPV) of an AFTA implementation. These models are parameterized upon the

number of LRMs and LRUs in the implementation, their power consumption and volume,

and other parameters. WPV-related characteristics of each AFTA component are known

via empirical measurement or engineering predictions: NDI components' characteristics can

be empirically measured, while the NE chaxa_teristics can be predicted based on engineer-

ing calculations and past experience. As the_ Brassboard NE design progresses, these pre-

dictions will increase in accuracy. The AFTA WPV are estimated by the simple summation

of the WPV of the components comprising a configuration. Verification of this linear com-

position model is straightforward.
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12. AFTA Architecture Synthesis

AFTA is characterized by numerous physical and operational parameters which may be

adjusted to meet the throughput, reliability_ aT|ability, and other requiremenfs Of a particu-

lax mission. The effects of varying these Parameters upon the AFTA availability, reliabil-

ity, weight, power, volume, and cost (for the i_erative aircraft mission) are provided by the

analytical formulations in Section 9 of this report. The process of suitably adjusting these

parameters in conjunction with use of the AV!'A analytical models is denoted "architecture

synthesis."

In this Section an architecture synthesis procedure is described which uses the mission

requirements described in Section 2 and the analytical formulations developed in Section 9-

this procedure is but one of many equally valid procedures suitable for use at a conceptual

study level of detail. This section subsequently demonstrates the use of this procedure to

determine tentative AFTA configurations for the helicopter TF/TA/NOE/FCS and Ground

Vehicle applications, within the limitations of the incomplete requirements data.

12.1. AFTA ArchitectUre Synthesls -_=

The AFTA architecture synthesis procedure consists of adjustment of the AFTA

configurable parameters. A list of these pararh-eters is presented below.

12.1.1. Configurable Parameters

Number of VGs: Selection of the num_0f VGs is based on the throughput require-

ments of the application. The AFTA may c6-/itain from one to forty VGs. The delivered

throughput of a VG has a second-order depen_nce on its redundancy level which is suffi-

ciently minor to be is neglected in this study. The exact relationship between throughput

overhead and redundancy level will be measured as the AFTA design and development

proceeds.

Redundancy levelof each VG: Multiple PEs in the AFTA can be formed into redundant

synchronous Virtual Groups (VGs) to achieve a degree of tolerance of random hardware

faults. Each VG may have a differentredundancy level. A VG's redundancy level may be

either simplex, triplex, or quadruplex. A simplex VG has little if any fault tolerance, a

triplex VG is fail-operational/fail-safe, and a quadruplex VG is fail-operational/fail-opera-

tional/fail-safe.
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Number of Processing Elements: The number of VGs and the redundancy level of each

VG determines the number of Processing Elements required. Each FCR in an AFTA may

possess up to eight active Processing Elements at a given time. A minimal AFTA configu-

ration would consist of four FCRs, three of which possess a single PE. A maximal AFTA

configuration would consist of five FCRs, each of which possesses eight PEs for a total of

forty PEs. Spare PEs may be added to any FCR, but only eight may use that FCR's net-

work dement at any given time.

Number of Fault Containment Reoons: An AFI_A implementation may possess either

four or five FCRs, depending on the reliability and throughput requirements of the applica-

tion. A four-FOR AFTA is fail-operational/fail-safe while a five-FCR AFTA is fail-opera-

tional/fail-operational/fail- safe.

Number of Network Elements: Each FCR of an AFTA must possess at least one net-

work element. Additional spare Network Elements can be added to the AFFA.

Number of Power Conditioners: Each FCR must possess at least one power condi-

tioner. Additional spare PCs may be added for exhaustion resilience.

Number of I/O Controllers_ There is currently no constraint on the number or types of

IOCs resident in any given FCR. Neither is there any current constraint on the number or

type of input or output devices that they control.

Redundancy management policy: Wide latitude exists regarding the management of the

Ab'TA's reconfigurable processing resources. Selection of a redundancy management pol-

icy is dependent upon the real-time constraints of the VG in which a fault is detected, the

mission duration and phase, the resources (throughput, memory, bandwidth, etc.) which

can be devoted to the recovery process, and other considerations. In addition, the redun-

dancy level of any VG can be varied at any time in response to faults, changes in mission

mode, and testing status.

12.1.2, AFTA Architecture Svnthesis Procedure

The simplified Ab'TA architecture synthesis procedure is as follows. It is assumed that

the delivered throughput, availability, and reliability requirements are known.

Step 1. From the throughput requirements and the available throughput per VG, de-

termine the number of VGs required using the delivered throughput model described in



Section8. The analytical models provide=aciirve of delivered throughput versus the num-

ber of VGs, which facilitates this selecti0n_= _e number of VGs may also be determined

based on other criteria such as functional p_fi0ning or prior experience.

Step 2. From the reliability requirements (either mission reliability or vehicle reliabil-

ity), the mission characteristics (environment, duration, etc.), and the selected mission re-

dundancy management strategy, determine the (mission or vehicle) redundancy level(s) of

the AFTA's VGs using the models described in Section 9. The analytical models provide a

curve of reliability versus the number of VGs and VG redundancy level. The VG redun-

dancy levels may also be chosen based on s_e other criteria, such as fail-op/fail-safe, etc.

Step 3. From the availability requireme_s, determine how many spare PEs are needed

in each FCR using the sortie availability model described in Section 9. The analytical

models provide a curve of availability versus the number of VGs, VG redundancy level,

number of spare FCRs, and number of spar e PEs per FCR. The number of spares may

also be chosen based on some other criteria! _....

Step 4. Using the weight, power, and volume models described in Section 9, deter-

mine the WPV of the configuration. The analytical models provide a curve of WPV versus

the number of PEs and FCRs.

Step 5. For the iterative aircraft mission, the FLCCPSU model provides an estimate of

the life cycle costs associated with the configuration. The analytical models provide curves

of FLCCPSU versus the parameters mention_ above and other cost-related inputs.

12.2. AFTA Architecture Synthesis

12.2.1. AFTA Characteristics Commonto Both Missions

Certain AFTA characteristics are to some extent independent of the mission. Assuming

that both missions utilize similar PEs (e.g. the R3000 PE for the flight vehicle mission and

the 68040 for the ground vehicle mission), these characteristics include the delivered

throughput.

12.2.1.1. Delivered Throughput

The following chart depicts the delivered throughput of AFTA as a function of the

number of PEs and the redundancy level into which the PEs are grouped. It is assumed

that PEs having a raw throughput of 20 MIPS (e.g., 68040 or R3000-class) are used, all



VGs in a configuration possess the same redundancy level, and the net overheads due to

the Ab_A Operating System and FDIR are equal to 20%.

Throughput,
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Figure 12-1. AFTA Delivered Throughput vs. Number of Processing Elements

12,2,2, AFTA Confi g!_mition for TF/TA/NOE/FCS Mission

The preliminary requirements analysis of Section 2 indicates that nine processing sites

are needed for flight-critical processing functions in the helicopter TF/TF/NOE/FCS

mission. For reasons outlined in Section 2, it is thought that the throughput obtained using

this processor count greatly exceeds that actually needed when operating system overheads

are extracted and processor throughputs are increased. Therefore, when the presentation

requires for conciseness and concreteness that some number of VGs be specified, it will be

assumed that six VGs are needed for flight-critical processing functions. It should be

borne in mind that this number may still represent a throughput overkill, and that the AFTA

analytic',d models produce results for any realizable AFTA processor count.
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12.2.2111 AnalyticaI Results

12.2.2.1.1. Failure Rarest

The AFTA component failure rates were calculated assuming that the hiatus

environment corresponds to the Ground, Fixed (GF) environment, and the mission

environment corresponds to the Rotary Wing Aircraft (AR) environment, both described in

MIL-HDBK-217E. ii_i__

Component

PElt

GF failure rate, per h AR failure ra_, per h

1.92E-5 6.58E-5

NE* 4.08E-5 1.85E-4

PC °* 1.59E-5 5.40E-5

FCR Bust* 1.92E-6 6.58E-6

Table 12-1. AFTA Component Failm Rates for Helicopter Mission Scenario

12.2.2.1.2. Reliability

For the rotary wing aircraft mission, the AFTA's reliability depends upon the VG

redundancy level and the duration of the _ssion. The following two charts show the

AFTA reliability for AFTA configurations composed of all simplex, all triplex, and all

quadruplex VGs for mission durations of on_nd four hours and for AFTA configurations

comprising four FCRs (curves labeled with the "-4" suffix) and five FCRs (curves labeled

with the "-5" suffix). The baseline NE as described in Section 4 is assumed to be used.

I/O failures are not included, and in-flight redundancy management corresponds to the

graceful degradation policy described in Sections 5 and 9.

t Permanent failure rates only.

tt Extrapolated from Lockheed Sanders R3000 VME PE sales literature.
* Baseline NE.

** Extrapolated from Varo Industries JIAWG 27VDC to 5VDC_50A module data.
"]'* Assumed to be 10% of the PE failure rate.
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Figure 12-2. Probability of AFTA Failure for l-hour Rotary Wing Aircraft Mission
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Figure 12-3. Probability of AFTA Failure for 4-hour Rotary Wing Aircraft Mission

As expected, the all-simplex VG configurations have significant higher failure

probability than the redundant configurations and can be eliminated from further

consideration for flight critical processing on this ground. The all-triplex VG

configurations have intermediate reliability levels-their variation with the number of PEs in

the configuration illustrates that PE failure_ as opposed to NE failure, is the dominant

failure mode. Interestingly, the all-quadruplex VG configuration residing in four FCRs has

reliability commensurate with the triplex configurations-._FTA failure in this configuration

is dominated by NE failure, as indicated by itS flat response to the number of PEs in the

configuration. This implies that if, for whatever reason, only four FCRs can be supported

in the vehicle, then no improvement in mission reliability is achieved by utilizing

quadruplex VGs instead of triplex VGs for the mission times of interest. The all-

quadruplex VG configuration residing in five FCRs surpasses all configurations in

reliability, while its variation of reliability with respect to the number of PEs in the

configuration indicates that AFTA failure in _is configuration is dominated by PE loss.

The probability of AFTA failure scales quadratically with the mission time for the all-

triplex VG configurations and cubically with the all-quadruplex configuration residing in
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five FCRs; this scaling is typical of attrition-dominated triplex and quadruplex systems. It

is interesting to note, however, that the all-quadruplex configuration residing in four FCRs

anomalously scales quadratically with mission time in a manner more reminiscent of a

triplex system• This can be explained by the fact that AFTA loss probability for this

configuration is dominated by the failure of NEs, as evidenced by its fiat response to

variation in the number of PEs in the configuration.

12.2.2.1.3. Throughput-Reliability Tradeoff

From the VG versus delivered throughput and reliability versus # PEs curves, a com-

posite chart (Figure 12-4) can be constructed which directly shows the tradeoff between

AFTA's delivered throughput and reliability.
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Figure 12-4. Delivered Throughput vs. AFTA Failure Probability for 1-hour Rotary Wing

Aircraft Mission
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12.2.2.1.4. Effect of VHSICIVLSI Network EIement Technology on Reliability

Based on the Network Element failure rate calculations presented in Section 9, the ex-

tensive use of VHSIC/VLSI technology to fabricate the Network Element would increase

its MTBF in the rotary wing aircraft environment by a factor of approximately 1.64. The

analytical models can be used to translate this component MTBF improvement into mission

reliability improvement. The results of thelanalysis using the VHSIC/VLSI-based "High

End" NE are presented in Figure 12-5 for the 1-hour rotary wing aircraft mission. The

relative improvement in failure probability is shown in Figure 12-6, which plots the failure

probability of an AFTA using the Baseline NE divided by the failure probability of an

AFrA using the VHSIC/VLSI-based NE.
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Figure 12-5. Probability of AFTA Failure for l-hour Rotary Wing Aircraft Mission using

VHSIC/VLSI-based Network Element
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Mission: Ba_line NE divided by VHSI_VLSI-based NE

12.2.2.1.5. Unavailability

From the throughput requirements one may determine the number of VGs required to

perform the mission's functions. From the reliability models one may determine the mini-

mum redundancy level these VGs must possess at sortie to meet the mission's reliability re-

quirements. This complement of resources is denoted the Minimum Dispatch Complement

(MDC). If MDC is not available at sortie due to faults, then the vehicle can not sortie.

AFTA allows the addition of spare components to attempt to increase mission availability.

Figure 12-7 shows the effect on mission availability of adding spare PEs in each FCR

and spare FCRs to an AFFA, assuming that an MDC of six VGs and four FCRs are needed

to sortie. The analysis was performed for configurations comprising all simplex, all

triplex, and all quadruplex VGs. The hiatus interval is assumed to be 23 hours at Ground,

Fixed failure rates. The curves labeled with a "4" suffix refer to a configuration containing

no spare FCR, while the curves labeled by the "5" suffix refer to configurations containing

a spare FCR. For the given model input parameters, addition of more than a single spare

PE per FCR does not significantly enhance availability. Addition of a spare FCR increases

availability somewhat, while the combination of one spare PE per FCR and one spare FCR

significantly enhances availability.
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Figure 12-7. AFTA Unavailability after 23-hour Hiatus for Six-VG/Four-FCR MDC

Figure 12-8 shows the effect on missionavailability of adding spare PEs in each FCR,

assuming that six VGs and _ FCRs are needed to sortie. The analysis was performed

for configurations comprising all simplex, all triplex, and all quadruplex VGs and the

hiatus interval is assumed to be 23 hours at Ground, Fixed failure rates. Again, addition of

more than a single spare PE per FCR does not significantly enhance availability. Note that

a spare FCR can not be added to this MDC _onfiguration since the number of FCRs would

then exceed that supported by AFTA. Consequently the extremely low unavailability levels

associated with the combined spare PEs and FCR can not be achieved.
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12.2.2.1.6. Weight

It is assumed for the calculation of the AFTA physical parameters for the helicopter

mission that JIAWG-class SEM-E packaging is used. Representative component weights

are enumerated in Table 12-2.
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PE

NEt

Rack

PC

1 lb.

1.5 lb.

5 lb.

3 lb.

Table 12-2. AFTA Component Weights for Helicopter AFTA

The weight of AFTA for the helicopter mission is depicted below as a function of the

number of PEs and FCRs.
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Figure 12-9. AFTA Weight for Helicopter Mission

12.2.2.1.7. Power

Representative power consumptions of JIAWG-class components are enumerated in

Table 12-3.

t Includes optical splitters.
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PE Power

NE Power

Bus Power

PC Effurien 9,

Table 12-3.
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Figure 12-10. AFTA Power for Helicopter Mission

Volume

The volumes of JIAWG-class SEM-E AFTA modules are enumerated in Table 12-4.
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PE Slots

NE Slots

PC slots

Rack Ends (# slots)

Slot Volume

1

1

2

2

1.77E-02 cu. ft.

(6.88 x 7.42 x 0.60 in 3)

Table 12-4. AFTA Component Volumes for Helicopter AFTA
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Figure 12-11. AFTA Volume for Helicopter Mission

Cost

The Fleet Life Cycle Cost per Service Unit model described in Section 9 generates vo-

luminous cost data for many possible configurations of AFTA. For conciseness, this re-

port only presents the cost data for the one-hour Rotary Wing Aircraft mission for an MDC

of six VGs. The input parameter values for the cost model are listed below. These

parameters are for illustrative purposes only, and should be updated as additional
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information becomes available during AFTA development and mission requirements

acquisition.

Parameter

Fleet service life

Value

100,000 hours

Hiatus time 23 hours

Sortie duration 1 hour

Number of vehicles requ.ire d ]?e.r sortie

Baseline vehicle cost

Ab'TA LRM cost

Number of LRMs in AFTA

Cost of AFTA rack

Number of racks in AFTA

Manpower cost for field repair, per hour

Mean time for field repair, hours

Manpower cost for depot diagnosis, per

hour

100

$6,OO0,0OO

Mean time for depot diagnosis, hours

_ Manpower cost for depot repair, per hour

Mean time for depot repair, hours

Depot condemnation ratio

LRM/LRU refurbishment parts cost

$10,000

Depends on Configuration
$10,000

Depends on Configuration

$200

4

$100

4

$200

4

1

$1,000

Table 12-5. FLCCPSU Input Parameters for Rotary Wing Aircraft Mission

For clarity of presentation, the cost analysis results are presented separately for three

different AFTA configurations: a four-FCR MDC configuration with no spare FCR, a

four-FCR MDC configuration with one spare FCR, and a five-FCR MDC configuration

with no spare FCR. The results are presented in tabular format. The leftmost column

indicates the redundancy level of the AFTA's VGs-this may be simplex, triplex, or

quadruplex. It is assumed that all VGs an a configuration are of identical redundancy level,

an assumption which may be relaxed without difficulty. In addition, for a given VG

redundancy level, the leftmost column lists the number of spare PEs per FCR which may

be added to increase availability. For conciseness, this parameter is varied from zero to one

spare PE per FCR, based on the availability analysis' illustration of the rapidly diminishing

return of additional spare PEs for a 23-hour hiatus. The row corresponding to VG
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redundancy level and number of spare PE s per FCR contains the corresponding cost data.

The column denoted Fleet Life Cycle Cost isihe sum of the the cost of unreliability, the

cost of maintenance labor, the cost of AFTA spares, the cost of vehicles, and the initial

procurement cost of the fleet's AFTAs. in_dition, the last column of the tables below

indicates the cost of unavailability, i.e., the cost of additional vehicle procurements required

to meet the sortie requirement given non-uni_ AFTA availability. This cost is included in

the cost of vehicles and cost of AFTAs coiumns and is included as a separate italicized

column solely for edification. _

The re,suits are presented in the following:table for an AFTA configuration consisting of

a four-FCR MDC and no spare FCR.

VG Re-

dundancy
Level

Simplex

0 spare
PEs[FCR
1 Spare
PE/FCR
Triplex

0 spare
PEs/FCR
l Spare l
PE/FCR
Quadmptex

0 spare
PEs/FCR
1 Spare
PE/FCR

Fleet Life

Cycle
Cost

4.03E+09

4.07E+09

Cost of
Unreli-

ability

3.36E+09

3.39E+09

Cost of'...... Cost of
Mainte-

nance
Labor

5.11E+06

6.13E+06

Spares

4.26E+07

5.11E+07

Cost of
Vehicles

6.1ME+08

6.03E+08

Cost of
AFTAs

1.61E+07

2.01E+07

Cost of
Unavaila

bility

3.88E+06

3.35E+06

,, ,,,

7.11E+08 1.81E+06" 6.80E+07 6.05E+08 2.82E+07 4.79E+06

7.OIE+07

7.64E+07

8.49E+07

7.23E+08

7.24E+08

7.36E+08

6.03E+08

6.05E+08

6.03E+08

1.82E+06

8.16E+06

9.17E+06

9.17E+06

3.22E+07

3.:23E+07

3.62E+071.02E+07

9.52E+05

9.58E+05

3.42E+06

15.10E+06

3.44E+06

Table 12-6. FLCCPSU Output Parameters for Rotary Wing Aircraft Mission, Four-FCR

MDC with no spare FCR

The analysis indicates that the minimum_cost configuration for a six VG, four-FCR

MDC AFTA with no spare FCR consists of six triplex VGs with no spare PEs. The total

cost for this configuration is $711M. Tabie i2-7 shows the relative contributions to this

cost.
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Cost of

Unreliability

0.26%

Cost of
Maintenance

Labor
1.15%

Cost of Cost of

Spares Vehicles

9.61% 85.48%

Cost of
AFTAs

3.99%

Cost of

Unavailability

0.68%

Table 12-7. FLCCPSU Constituent Costs for Four-FCR MDC with no spare FCR

The analytical results are presented in the following table for an AFTA configuration

consisting of a four-FCR MDC and one spare FCR.

VG Re-

dundancy
Level

Fleet Life

Cycle
Cost

Cost of
Unreli-

ability

Cost of
Mainte-
nance
Labor

Cost of

Spares

Cost of
Vehicles

Cost of
AFTAs

Cost of
Unavaila

bility

Simplex

0 spare 4.03E+09 3.36E+09 4.26E+07 6.01E+08 1.60E+07 5__6E+05

PEs/FCR
1 Spare 4.06E+09 3.39E+09 5.11E+07 6.00E+08 _2.00E+07 1.16E+04

PF__/FCR

Triplex

7.07E+08 1.81E+06 6.80E+07 6.01E+08 2.81E+070 spare
PEs/FCR
l Spare
PENCR

Quadruplex

5.11E+06

6.13E+06

8.16E+06

9.17E+06

9.17E+06

1.02E+07

1.82E+06 7.64E+07

"1.64E+07

8.49E+07

0 spare
PEs/FCR

l Spare
LPE/FCR

6.00E+08

6.02E+08

6.00E+08

7.19E+08 3.20E+07

3.21E+07

3.60E+07

7.20E+08 "9152E+05

7.32E+08 9.58E+05

1.40E+06

1 33E+04

1.69E+06

1.41E+04

Table 12-8. FLCCPSU Output Parameters for Rotary Wing Aircraft Mission-Four-FCR

MDC with one spare FCR

The minimum cost configuration for a six VG, four-FCR MDC AFTA with one spare

FCR again consists of six triplex VGs with no spare PEs. The total cost for this configu-

ration is $707M. Table 12-9 shows the relative contributions to this cost. Note the

reduced cost due to unavailability due to the added FCR.

Cost of

Unreliability

Cost of Cost of Cost of

Maintenance Spares Vehicles
Labor

0.26% 1.15% 9.61% 85.01%

Cost of
AFTAs

3.97%

Cost of
Unavailability

0.20%

Table 12-9. FLCCPSU Constituent Costs for Four-FCR MDC with one spare FCR
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Finally, the results are presented below for an AFTA configuration consisting of a five-

FCR MDC.

VG Re-

dundancy
Level

Fleet Life

Cycle
Cost

Cost of
Unreli-

ability

Cost of Cost of
Mainte-
nance
Labor

Spares

Cost of
Vehicles

Cost of
AFTAs

Cost of
Unavaila

bility

Simplex

1 Spare 4.70E+09 4.02E+09 6.39E+06 5.33E+07 6.04E+08 2.01E+07 4.19E+06

PE/FCR .........
Triplex

8.93E+06 6.05E+089.08E+050 spare
PEs/FCR
1 Spare

PE/FCR
Quadruplex

7.20E+08

7.35E+08 9.15E+05' 1.02E+07" 6.04E+08

1.02E+07

1.15E+07

7.36E+08

7.44E+07

8.50E+07

8.50E+07

9.56E+077.51E+08

8.81E+02 6.05E+08

6.04E+08

0 spare
PEs/FCR

1 Spare
PELFCR

3.03E+0;/

3.52E+07

3.53E+07

4.03E+0")8.88E+02

5.38E+06

4.30E+06

5.71E+06

4.33E+06

Table 12-10. FLCCPSU Output Parameters_0i Rotary Wing Aircraft Mission-Five-FCR

MIX2

Once again, the minimum cost configuration for a six VG, five-FCR MDC AFTA con-

sists of six triplex VGs with no spare PEs. The total cost for this configuration is $720M.

Table 12-11 shows the relative contribution_'_:::this cost.

Cost of

Unreliability

0.13%

Cost of Cost of Cost of

Maintenance Spares Vehicles
Labor

1.26% 10.52% 85.55%

Cost of Cost of
AFTAs Unavailability

4.28% 0.76%

Table 12-11. Minimum-FLCCPSU Constituent Costs for Four-FCR MDC with one spare

FCR

Of all the configurations modeled, the lowest-cost configuration consists of a four-FCR

MDC AFTA with one spare FCR and no spare PEs at all. Note that this configuration dif-

fers from one selected based on maximum reliability (five-FCR MDC containing all

quadruplex VGs) or maximum availability (one spare FCR and one spare PE per FCR). It

should also be emphasized that these results are presented primarily to illustrate the use of

cost modeling to assist in the architecture synihesis process. The actual results obtained
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depend strongly on the input parameters and will lead to different conclusions as these

parameters change.

12.2.3. AFTA Analysis for Ground Vehicle Mission

12.2.3.1. Throughput

The AFTA throughput for the Ground Vehicle mission is presented in Section

11.2.1.1.

_ili_

In the context of the Ground Vehicle mission the AFTA's unreliability contributes to the

failure of the vehicle to perform its mission, in accordance with the Ground Vehicle

mission state diagram presented in Section 2. This is not assumed to result in loss of the

vehicle. Moreover, the relaxed temporal constraints associated with the ground mission

and the long mission times dictate the use of an availability maximization redundancy

management policy, described as the "processor replacement" option in Section 5 and

modeled as PPR in Section 9. We therefore parameterize mission success as the probability

that the Minimum Mission Complement (MMC) of VGs and FCRs are available. It is

assumed that, regardless of the redundancy level of the VGs at the beginning of the

mission, the AFTA can perform its intended function as long as there are at least MMC

functioning simplex VGs which may have started out as simplexes, or which may be

degraded triplexes or quadruplexes. Therefore the following charts show PPR as the

probability that MMC simplex VGs are functional, as a function of MMC and the number

of spare PEs per FCR and the number of spare FCRs.

The failure rates are calculated assuming that the mission environment corresponds to

the Ground, Mobile (GM) environment as described in MIL-HDBK-217E.
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Component GM failure rate, per h

PE 3.23E-5

NE 9.26E-5

PC 2.67E-5

3.23E-6FCR Bus

Table 12-12. AFTA Component Failure Rates for Ground Vehicle Mission Scenario

The following charts show the probability that MMC VGs can not be formed from the

simplex processing resources in AFTA as a function of the MMC, the number of spare PEs

per FCR, and the number of spare FCRs. The Curves are presented for four mission times:

8, 24, 168, and 720 hours.

1.00E+O0

1.00E-01

1.00E-02

AFTA
1.00E-03

Unreliability

1.00E-04

1.00E-05

1.00E-06

5

!:

K_X X,_._,-X-_"--'X_

1

!

10 15 20 25 30

VG MMC

,.o. 0 spares

"ql,' spare PE

spare NE

"X' spare PE + NE

Figure 12-12. AFTA Unreliability for Eight-Hour Ground Vehicle Mission
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Figure 12-13. AFTA Unreliability for 24-Hour Ground Vehicle Mission
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Figure 12-14. AFTA Unreliability-fi5 r 168-Hour Ground Vehicle Mission
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Figure 12-15. AFI'A Unreliability for 720-Hour Ground Vehicle Mission

12.2.3.3. Weight

It is assumed for the calculation of the AFTA physical parameters for the Ground

Vehicle mission that SAVA-compatible packaging is used. The component weights are

enumerated in Table 12-13 (for lack of any better information, these weights are the same

as for the SEM-E version of AFTA).

PE

NEt

Rack

PC

1 lb.

1.5 lb.

5 lb.

3 lb.

Table 12-13. AFTA Component Weights for Helicopter AFFA

The weight of AFTA for the Ground Vehicle mission is depicted below as a function of

the number of PEs and FCRs.

t Includes optical splitters.
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Figure 12-16. AFTA Weight for Ground Vehicle Mission

Power

Representative component power consumptions for MIL-STD-344 modules are

enumerated in Table 12-14.

PE Power

NE Power

Bus Power

PC Efficiency

15W

15W

1W

90%

Table 12-14. AFTA Component Powers for Ground Vehicle AFTA
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Figure 12-17.

Volume

AFTA Power for Ground Vehicle Mission

The volumes of MIL-STD-344 AFTA modules are enumerated in Table 12-15.

PE Slots

NE Slots

PC slots

Rack Ends (# slots)

Slot Volume

1

1

2

2

3.55E-2 cu. ft.

(10.5 x 7.3 x 0.80 in 3)

Table 12-15. AFTA Component Volumes for Ground Vehicle AFTA
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Appendix B. Glossary Of Terms and Acronyms

AFTA-Army Fault-Tolerant Architecture-A=computer designed for both high reliability and

high throughput. The AFTA is based on the _PP architecture.

ll_/:i.Qdig...l_-A set of tasks whose iteratirK=tes are unknown or undefined.

ASIC-Application Specific Intetn'ated Circuit:A type of integrated circuit that can be custom

designed by the hardware engineer so that it will perform a particular logic or processing

function and at the same time save circuit bo_d space and power consumption. The advent

of VLSI design techniques has made ASICs a more flexible and practical option for hard-

ware designers.

ATP-Authentication Protocoi-A protocol utilized by the BRNP to sign outgoing packets

and to test the authenticity of incoming packetsl

ATPG-Automatic Test Pattern Generation'The generation of test vectors directly from a

netlist for verification of device functionality. Test vectors from an ATt_ program do not

test the correct functionality of the device; they only test that the device is a correct imple-

mentation of the design as specified by the netlist.

behavioral VH L is defined to be a VHDL ai:chitecture which uses any of the legal VHDL

constructs, including those which do not co_espond to possible hardware realizations of

the description (i.e., pure behavioral may not be synthesizeable). A level of description

that specifies a device functionally in terms of output reactions to input stimulus. A behav-

ioral description can also specify the timing relationships of inputs to outputs.

BIT-Built In Test-This is an internal diagn0siic testing system that is included as part of the

AFTA design. There are three forms of the BIT-- I-BIT is the initial power-on test system,

M-BIT is for maintenance testing, C-BIT is the continuous in-flight test system.

BRNP-Byzantine Resilient Network _to_obA network layer protocol which implements

the Byzantine Resilient Virtual Circuit in order to guarantee that all messages are delivered

accurately.

broadcast addressjrlg-A method of station addressing using an identifier that causes all sta-

tions to respond to the specified address.

Page B'I



_-The ability to effectively isolate a node from the network without disrupting the

continuity of the network.

Byzantine Resilient-Capable of tolerating Byzantine faults. A Byzantine Resilient system is

capable of handling arbitrarily malfunctioning components that may supply faulty informa-

tion to other parts of the system thereby causing a spread of faulty information within the

system.

C3-Cluster _-An bTPP model number. Composed of either 4 or 5 FCRs, 3-40 processors,

1-40 vIDs, simplex, triplex, and quadruplex processor redundancy levels. Previous FTPP

models were C1 (4 FCRs, 16 processors, 4-16 VIDs, simplex, duplex, triplex, and

quadruplex processor redundancy levels) and C2 (4 FCRs, 4 processors, one fixed quad

VID).

cache-A form of memory that is typically much faster and much smaller than main memory.

Through utilization of cache memory, a processor's throughput will be increased. Typi-

cally cache memory acts as a staging area for data; information will be pulled from main

memory and temporarily stored in cache while it undergoes processing.

CDU-Cockpit Display Unit-A cathode ray tube display located in the vehicle cockpit for

display of system status. The CDU may display overall AFTA system status, LRU level

status, or LRM level status.

CID-Communication Identification-A designation assigned to each task which is used for

intertask communication.

class test-A test of the Network Element voting mechanism that requests a non-congruent

message exchange selectively on each channel of a fault masking group.

cluster-An FFPP consisting of 4 or 5 FCRs containing at least one virtual processing site.

Multiple clusters could be connected by a network device (such as a fault-tolerant data bus)

to provide even greater throughput than a single cluster. Most references to an FrPP refer

to a single cluster design.

CMF-Common Mode Fatlll-A type of malfunction which will cause multiple faults or

complete execution failure within a redundant processing group. Common mode faults

may result from software flaws, hardware bugs, design flaws, massive electrical upsets

etc.
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_-Input/Output processesthatallow the associatedvirtual groupto perform

othertaskswhile I/O iscollectingdata. Thisa!!owsfor greaterprocessorthroughput.

CRC-Cyclic Redundancy Check-An error det_ecting code used in data communications that

allows the unit receiving a message to ensure through binary mathematics that it is the same

message sent by the transmitting unit.

CSMA/_-Carrier Sens¢ Multiple Access with Collision Detection-A form of media access

control whereby a potential transmitting station will monitor the bus to ensure that it is clear

before transmission begins. During transmission, the station also monitors the bus to

check for message collisions. If a collision _curs, the message must be re-transmitted.

CT-Conf'tgurati_le-A table stored on the Network Element that contains the current

configuration of the system, i.e. which processors are members of which virtual groups.

DAIS-Diotal Avionics Instruction Set-A benchmark for measuring processor throughput.

_-A set of diagnostic level tests executed outside of the constraints of a real-time

environment with emphasis on the isolation of chip level faults in these components. These

tests would occur at a maintenance repair facility in contrast to the various forms of built-in

testing.

DPRAM-Dtlal-Port Random Access Memory-The type of memory that occupies the data

segment. It provides a buffer between the NE and the PE; both the NE and the PE may ac-

cess the data segment asynchronously, provided that they do not attempt to access the same

location.

DR-Discrepancy Report-A report that is filed whenever unexpected behavior of the hard-

ware, software, or system is encountered. By recording observable symptoms of the sys-

tem throughout testing, integration, verification and validation, one may better trace and

identify system flaws.

gltl_-A specific instance of a protocol element in an Open Systems Interconnection layer or

sublayer.

FCR-Fault Containment Region-Usually comprised of a number of line replaceable mod-

ules such as Processing Elements, Network Elements, input/output controller, and power

conditioners. The AFTA is made up of four or five FCR's, and each FCR usually resides
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onasinglecircuit board(with theexceptionof thepowerconditioner).An interchangeable
termfor theFCRis Line ReplaceableUnit or LRU.

FDDI-FiberDistributed Data Interface-A networking standard developed by the American

National Standards Institute to provide high bandwidth for Local Area Networks.

FDIR-Fault Detection. Identification and Recovery_ -FDIR software designed for the AFTA

allows it to sustain multiple successive faults by identifying a faulty component and recon-

figuring the AFTA system operation to compensate for the fault.

FIFO-FirstlnFirst Out-A type of information buffer in which the data that is stored first

chronologically will be the first to be extracted.

FMEA-Failure Modes and Effects Analysis

FMG-Fault Masking Group-A logical grouping of three or four processors to enhance the

reliability of critical tasks. The members of an FMG execute the same code with the same

data and periodically exchange messages to ensure that they produce the same outputs.

FrC-Eau!t_T_olerant Clock-A distributed digital phase-locked loop used for synchronization

of AFTA fault containment regions.

FTDB-Fault Tolerant Data Bus-A local area network designed around principles of Byzan-

tine resilience. Its primary objective is to provide an optimal internetworking system be-

tween simplex and redundant processing sites.

FTNP-Fault Tolerant Navigation Processor-The initial ground vehicle application for the

AFTA is for the navigations system in Armored Systems Modernization vehicles.

FTPP-Fault-Tolerant Parallel Processor-A computer designed for both high reliability and

high throughput. The core of the FTPP is the Network Element.

functional reliability-The probability that a given function can be executed because its re-

sources are operational.

functional synchronization-In maintaining synchronous operation, the members of a VID

perform a synchronizing act after some sequence of functions has been completed. The se-

quence of functions between the synchronization points is referred to as a frame.
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GC-Global Controller-A microcoded finite-state machine used to coordinate the functions

throughout the Network Element.

m'aceful de_m'adation-Through self-testing, a virtual group may identify a faulty member

and gracefully degrade its redundancy level using a configuration table update message to

eliminate the faulty channel.

IOC-lnput/Output Controller-These devices connect the AFTA to the outside world, and

they must be compatible with the bus connecting elements of the FCR. They may have a

programmable processor on board to drive the I/O, or they may require off-board proces-

sors for operation. .........

IPS-lnstructions Per Second-The number of machine language instructions that a processor

will execute every second. This measurement is used to reference the speed of the proces-

sor.

hS_Q/.Q_-lntemational Standards Organization/Open Systems Interconnection-A specifica-

tion and model for computer communication networks.

LAN-I_,o_al Area Network-A network topology that interconnects computer systems sepa-

rated by relatively short distances (2-2000 meters). LAN technology is usually based on a

shared medium with no intermediate switching nodes required.

leaf-level-(VHDL) The models at the bottom of the model tree. Leaf-level models in VHDL

are always pure behavioral models.

LERP-Loclal Exchange Request Pattem-A string of bytes describing the current state of the

input and output buffers for each processor in an FCR. The LERP is used to generate the

SERP. Each FCR has a different configuration, therefore the LERPs for each FCR will be

different. For this reason, LERPs must be treated as single-source data.

link-An element in a physical network thai _i_vides interconnection between nodes.

LOC-_-This will occur as a result of a failure in any flight critical portion of

the Flight Control System. For analysis purposes, LOC will be considered as a total loss

of the vehicle.
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_-Each virtual groupwill exerciseits own fault detectionandidentificationpro-

cessesto monitorfailuresamongits processors.Also, eachvirtual groupmayinitiate its

own recoveryoptions.

logical addressing-A method of station addressing using an identifier that may select a

group of stations to respond to the specified address.

LRM-Line Replaceable Module-The physical unit for field diagnosis and repair. Typically

it consists of one circuit card assembly with one or more Processing Elements.

LTPB-Linear Token Passing Bus-A media access control method whereby stations pass a

token along a virtual ring from one to another. A station may only transmit when it pos-

sesses the token.

MlX2-Minimum Dispatch Comolement-This specifies the absolute minimum level of oper-

ability for the AFTA system to be cleared for a sortie.

media access control-The method by which access to the physical network media is limited

to a single node so that communications over the media are undisturbed.

ilngllj.g..iay_-One or more physical layer media. Multiple media layers are physically and

electrically isolated from each other to the same degree as a fault-containment region in a

fault-tolerant computer. Most traditional LANs use only a single network layer. A Byzan-

tine resilient network usually employs multiple media layers for redundancy.

memory, alignment-A process whereby the RAM and registers in each processor of a virtual

group are made congruent as part of the resynchronization of a virtual group.

mission reliability-Arithmetically speaking, mission reliability is one minus the probability

that failure of the AFTA causes abortion of the mission.

MMC-Minimum Mission Complement-This specifies the minimum level of AFTA oper-

ability for the vehicle to continue its mission.

b'DI-NorI-Developmental Item

NE-Network Element-The hardware device which provides the connectivity between vir-

tual groups. The primary function of the NE is to exchange and vote packets of data pro-
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videdby theprocessors.Theensembleof NetworkElementsforms avirtual busnetwork

to whichall virtualgroupsareconnected.

NE_-Network Element ID-The name by which a Network Element is known in file physi-

cal AFTA configuration. An NEID refers to a specific Network Element in the system, i.e.

the same NEID on different FCRs refers to the same Network Element. The NEID is also

used to refer to the FCR in which the referenced Network Element resides. By convention,

letters are used to denote the NEID.

netlist-A list defining interconnections of components. Netlists are typically used for de-

signing printed circuit boards or ASICs.

NlU-Network Interface Unit-The conneeti0n between a station and the FTDB

node-An element in a physical network thatprovides the necessary interface between a sta-

tion and the network media.

nonp_ reemptible I/O dispatcher-A task on the virtual group that manages the execution of

certain I/O instructions that cannot be inte_pted.

l/a.c.k_-A block of data consisting of a header, data, and a trailer exchanged between peer

protocol entities. The term packet is somewhat generic and is applied at all levels of the

protocol hierarchy.

p.ag.k._-A string of data of fixed or variable length for transmission from one processor to

another through an inter-processor networkl A message-passing network handles data in

packets. The term packet is used here to refer to a fixed-size (64 bytes) block of data which

is transmitted by the Network Elements. _ii

PDU-Protocol Data Unil-A fancy name for a packet. PDU is the name used by OSI.

PE-Processing Elemcnt-A hardware device which provides a general or special purpose

processing site. A minimal PE configuration Contains a single processor and local memory

(RAM and ROM). PEs may optionally have private I/O, making them a combination PE

and IOC.

PEID-Processing Element ID-The name by Which a Processing Element is known in the

physical AFTA configuration. Each PE in an FCR has a unique PEID. However, the same
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PEID may be usedby anotherprocessorin anotherFCR. A combinationof NEID and

PEIDis usedto uniquelyidentifya singleProcessingElementwithin acluster.

physical addressing-A method of station addressing using a unique identifier such that at

most one station responds to the specified address.

PIMA-Portable Intelligent Maintenancg Aid-A system resembling a laptop computer which

Will initiate the maintenance built in testing (M-BIT), interrogate AFTA for fault informa-

tion logged during a mission, and extract maintenance records for system components.

PMD-Physical layer Medium D_ndcrit-The standard which defines the physical medium

that is used for the data communications channel on a network.

presence test-The polling of various components to determine if each is active and syn-

chronized. The testing may be performed on members of virtual groups or on the virtual

groups themselves.

orimitive-A function or procedure that one entity provides to another. The primitive def'mi-

tion specifies the inputs, outputs, and data formats for the primitive. :=

PROM-Programmable Read Only Memory-A form of computer memory that will store a

permanent copy of one or more subroutines specifically intended for use by a particular mi-

croprocessor. PROM's allow for a certain level of hard-wired software control over the

processor.

_-A virtual group consisting of four processing sites.

ratcgroupdispatcher-An RG4 task that is responsible for controlling the execution of the

rate group tasks and providing reliable communication between the rate group tasks

throughout the system.

Register Transfer Level (RTL) VHDL-A behavioral format which specifies the functionality

of a block from the standpoint of random combinational logic and/or synchronous regis-

ters. For the purpose of the Ab-TA NE development, RTL is defined to be synthesizeable

behavioral VHDL, that is, a behavioral VHDL description that is suitable for input to a

synthesis tool.

renrocurement-The act of obtaining new parts to replace parts in an existing system, or to

build additional copies of an existing design.
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RG-Rglg_.C, tr.9._-A set of tasks whose iteration rate is well-defined and whose execution

times do not exceed the iteration frame (the inverse of the iteration rate).

RISC-Reduced Instruction Set Computer-A t_e of microprocessor which utilizes a limited

set of machine language instructions to allow for more rapid execution of those instructions

and thus greater throughput for the computer.

RTS-Run Time System

SAVA-Standard Army Vetronics Architecture ....

,_lgll.l_lLI/..Q-Input/Output processes that re_ire the managing virtual group to completely

supervise the activity. In other words, the Virtual group must block itself until the I/O is

finished.

SERP-System Exchange Request Pattem-A string of bytes describing the current state of

the input and output buffers for each processor in the system. The SERP is used to deter-

mine if packets can be sent from one Virtual group to another. The LERP from each FCR is

exchanged using a source congruency to ge_ate the SERP. Because the SERP originates

from a source congruency exchange, it can be considered congruent throughout all func-

tioning FCRs.

SIFT-Software Implemented Fault Tolerance-System fault tolerance functions achieved

primarily through operating system programming rather than primarily through dedicated

hardware ......

simplex-A virtual group consisting of only one processing site.

single-source d_Ia-An element of informationwhich originates from a single point. Exam-

ples of single-source data include sensor readings, input values, and syndromes. Single-

source data must be distributed to fault-masking groups using a source congruency ex-

change to maintain Byzantine resilience.

sortie availability-One minus the probability that the vehicle is prevented by the AFTA from

beginning a mission at the desired time.

source cong'r_lgn¢y-A type of exchange used todistdbute data from a single source, such as

an input device, to members of a fault-masking group. The source congruency, which is
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also known as a class 2, 2-round exchange, or interactive consistency, is a primary re-

quirement for a Byzantine resilient system.

station-A device connected to a network that can transmit or receive data over the network.
_ _ r

Often a station is a processing site. In the FTDB, a station can be a redundant processing

site.

structural VI-IDL-A level of description that specifies a VHDL architecture by def'ming in-

terconnections of instantiations of VHDL entities. A structural description resembles a

conventional netlist.

_-A bit field indicating the observance of unusual behavior somewhere in the sys-

tem. Syndromes can be used in an attempt to diagnose and repair faults in the system.

_.gglR.ED_I- A process that will coordinate system status and fault information as well as

testing and analyzing shared components.

Iiks.g.IRigl_0-The movement of a necessary task from a failed processor to another pro-

cessor within the same fault containment region.

test bench-A model of a test fixture that is used to test a device being designed with VHDL.

The test bench is written in VHDL and provides a non-proprietary way of stimulating and

monitoring a design in a simulator.

testability-The ability to unambiguously ascertain the functionality of each Line Replaceable

Module of the AFTA.

_]_ff../M]_-TerrainFollowing/Terrain Avoidance/Nat) of the Eanh-A typical helicopter

mission application for which the AFTA will be designed.

THT-Token Holding Timer-A method used with token passing media access protocols to

limit the amount of time each station can transmit on the network.

timeout-A value of time used to monitor skew between processors of an FMG. All proces-

sors in an FMG should be synchronized to within one timeout value, so if a processor does

not respond within the timeout period, that processor is considered faulty, and the other

processors will continue uninhibited. Timeouts are necessary on the AFTA to prevent

faulty processors from halting the system.
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_-A 32-bitquantitythatindicates the _lative time within the cluster. The Network

Element places a timestamp in the input info block for each packet successfully delivered to

a virtual group.

I/_-Transient NE Recovery-The procedure by which a Network Element which has suf-

fered a transient fault is reintegrated into thecluster. The first part of TNR is similar to the

ISYNC procedure. TNR also specifies the realignment of the Network Element state.

transient recovery, policy-A recovery option whereby the faulty component is immediately

disabled and an attempt is made to reintegrate the component into the system.

_-A virtual group consisting of three processing sites.

_-The process of demonstrating that an implemented system correctly performs its

intended functions under all reasonably anticipated operational scenarios.

_tU_i_-In a Byzantine resilient system, a condition in which all functioning members of a

fault-masking group are guaranteed to possess correct data. The validity condition also

implies the agreement condition.

vehicle reliability-One minus the probability that the vehicle is lost due to failure of the

AbTA.

VG-virtual group-A grouping of one or more processors to form a virtual (possibly redun-

dant) single processing site. All processors in a virtual group execute the same instruction

stream. If a virtual group has more than one member, those members must reside in differ-

ent FCRs. Virtual groups of 3 or more mem_rs are known as fault-masking groups.

Y.ttI2L-VHSIC Hardware Description Language-A language for specifying hardware de-

sign. VHDL designs can be expressed in a behavioral or a structural method. VHDL also

defines a simulation environment and incorporates an intrinsic sense of time.

VHSIC-_'-y. High Speed Inte_m'ated Circu_t_A Government-funded project to develop

technologies to be applied to new, high speed integrated circuits. The VHSIC Hardware

Description Language (VHDL) was develo_ under the VHSIC program.

VID-Virtual Identifier-The name by which a virtual group is known to the system. Also,

sometimes used as a synonym for virtual group.
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_-A messagesentby all membersof a redundantprocessinggroup. This

messagetype is only usedwhenexactconsensusamongall redundantmembersis ex-
pected.This is alsoknownasaClass1message.

Yoter lest-A test of the Network Element voting mechanism that seeds non-congruent val-

ues selectively on each channel of a fault masking group.

WAN-Wide Area Network-A network topology that interconnects computer systems sepa-

rated by long distances. WAN systems usually use packet switched technology.

_a_[.9.g..0.1]l_-A simple timekeeper that will monitor operations in both the Processing El-

ements and the Network Elements to keep the hardware and software from wandering into

undesirable states.

)Y_Qr,.liJng...gl__tlll-The set of FCRs in a cluster which are synchronized and in the operational

phase. An FCR which suffers a fault drops out of the working group. The working group

may attempt to reintegrate the failed FCR into the working group.

WPV-Y_/eight Power Volume-These are physical characteristics used to describe the AFrA.
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